精英家教网 > 高中数学 > 题目详情
12.已知函数f(x)=ex-ax+a(a∈R),其中e为自然对数的底数.
(1)讨论函数y=f(x)的单调性;
(2)函数y=f(x)的图象与x轴交于A(x1,0),B(x2,0)两点,x1<x2,点C在函数y=f(x)的图象上,且△ABC为等腰直角三角形,记$\sqrt{\frac{{{x_2}-1}}{{{x_1}-1}}}=t$,求at-(a+t)的值.

分析 (1)求导,分类讨论,根据导数与函数单调性的关系,即可求得f(x)的单调性区间;
(2)由题意可知:C=90°,则${x_0}=\frac{{{x_1}+{x_2}}}{2}∈({x_{1\;}},{x_2})$,即y0=f(x0)<0,然后得到关于参数a的方程$at-\frac{a}{2}(1+{t^2})+\frac{1}{2}({t^2}-1)=0$,则$a=1+\frac{2}{t-1}$,则(a-1)(t-1)=2.即可求得at-(a+t)=1.

解答 解:(1)函数f(x)=ex-ax+a,f'(x)=ex-a,
①当a≤0时,则f'(x)>0,则函数f(x)在(-∞,+∞)是单调增函数.
②当a>0时,令f'(x)=0,则x=lna,
若x<lna,f'(x)<0,所以f(x)在(-∞,lna)上是单调减函数;
若x>lna,f'(x)>0,所以f(x)在(lna,+∞)上是单调增函数.
(2)由(1)可知当a>0时,函数y=f(x)其图象与x轴交于两点,则有${e^{x_i}}-a{x_i}+a=0$,则$a({x_i}-1)={e^{x_i}}>0$,则xi>1(i=1,2).
于是${e^{\frac{{{x_1}+{x_2}}}{2}}}=a\sqrt{({x_1}-1)({x_2}-1)}$,在等腰三角形ABC中,显然C=90°,所以${x_0}=\frac{{{x_1}+{x_2}}}{2}∈({x_{1\;}},{x_2})$,即y0=f(x0)<0,
由直角三角形斜边的中线性质,可知$\frac{{{x_2}-{x_1}}}{2}=-{y_0}$,
所以${y_0}+\frac{{{x_2}-{x_1}}}{2}=0$,即${e^{\frac{{{x_1}+{x_2}}}{2}}}-\frac{a}{2}({x_1}+{x_2})+a+\frac{{{x_2}-{x_1}}}{2}=0$,
所以$a\sqrt{({x_1}-1)({x_2}-1)}-\frac{a}{2}({x_1}+{x_2})+a+\frac{{{x_2}-{x_1}}}{2}=0$,
即$a\sqrt{({x_1}-1)({x_2}-1)}-\frac{a}{2}[({x_1}-1)+({x_2}-1)]+\frac{{({x_2}-1)-({x_1}-1)}}{2}=0$.
因为x1-1≠0,则$a\sqrt{\frac{{{x_2}-1}}{{{x_1}-1}}}-\frac{a}{2}({1+\frac{{{x_2}-1}}{{{x_1}-1}}})+\frac{{\frac{{{x_2}-1}}{{{x_1}-1}}-1}}{2}=0$,
又$\sqrt{\frac{{{x_2}-1}}{{{x_1}-1}}}=t$,所以$at-\frac{a}{2}(1+{t^2})+\frac{1}{2}({t^2}-1)=0$,
即$a=1+\frac{2}{t-1}$,则(a-1)(t-1)=2.
所以at-(a+t)=1.

点评 本题考查导数的综合应用,考查利用导数判断函数的单调性,考查分类讨论的思想,转化思想,方程思想,做题要认真仔细,方法要明,过程要严谨,考查学生分析问题解决问题的能力,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.已知f(x)是定义在(a,b)内的可导函数,则“f'(x)>0”是“f(x)在(a,b)上为增函数”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.给出下列四个命题:①若a>b>0,则$\frac{1}{a}$>$\frac{1}{b}$;②若a>b>0,则a-$\frac{1}{a}$>b-$\frac{1}{b}$;③若a>b>0,则$\frac{2a+b}{a+2b}$>$\frac{a}{b}$;④a>0,b>0且2a+b=1,则$\frac{2}{a}$+$\frac{1}{b}$的最小值为9.
其中正确命题的序号是②④(把你认为正确命题的序号都填上).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知正项数列{an}的前n项和为Sn,且a1=2,an2=4Sn-1+4n(n≥2).
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)求a2+a5+a8+…+a89的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.等差数列{an}的前n项和为Sn,已知a1-a5-a10-a15+a19=2,则S19的值为(  )
A.38B.-19C.-38D.19

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知双曲线$C:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$,过点P(3,6)的直线l与C相交于A,B两点,且AB的中点为N(12,15),则双曲线C的离心率为(  )
A.2B.$\frac{3}{2}$C.$\frac{{3\sqrt{5}}}{5}$D.$\frac{{\sqrt{5}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设F1,F2是双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的两个焦点,点P在双曲线上,已知|PF1|是|PF2|和|F1F2|的等差中项,且∠F1PF2=120°,则该双曲线的离心率为(  )
A.1B.$\frac{3}{2}$C.$\frac{5}{2}$D.$\frac{7}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.复数(a+i)(1+2i)是纯虚数(i是虚数单位),则实数a=2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.在△ABC中,角B为钝角,则sinB>sin(A+B).(填“>”或“<”或“=”)

查看答案和解析>>

同步练习册答案