精英家教网 > 高中数学 > 题目详情

(本小题满分13分)已知函数
(1)若曲线处的切线垂直y轴,求a的值;
(2)当
(3)设
使,求实数b的取值范围。

   函数
(1)………………………………………………………2分
(2)当



;………………………………………………5分

;………………………………………………7分

。………………………………9分
(3)当
即存在

所以,即实数b取值范围是……………………13分

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数=.
(1)求函数在区间上的值域T;
(2)是否存在实数,对任意给定的集合T中的元素t,在区间上总存在两个不同的,使得成立.若存在,求出的取值范围;若不存在,请说明理由;
(3
  

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)设函数 其中
(Ⅰ)求的单调区间;
(Ⅱ) 讨论的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题14分)
线的斜率是-5。
(Ⅰ)求实数b、c的值;
(Ⅱ)求f(x)在区间[-1,2]上的最大值;
(Ⅲ)对任意给定的正实数a,曲线y=f(x)上是否存在两点P、Q,使得△POQ是以O为直角顶点的直角三角形,且此三角形斜边中点在y轴上?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数:
(1)证明:++2=0对定义域内的所有都成立;
(2)当的定义域为[+,+1]时,求证:的值域为[-3,-2];
(3)若,函数=x2+|(x-) | ,求的最小值

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分16分)
已知函数.
(1)求函数在点处的切线方程;
(2)若在区间上恒成立,求的取值范围;
(3)当时,求证:在区间上,满足恒成立的函数有无穷多个.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数 ()(为自然对数的底数)
(1)求的极值
(2)对于数列,   ()
①  证明:
② 考察关于正整数的方程是否有解,并说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

.已知函数,其中
(1)设函数,若在区间上不是单调函数,求的取值范围.
(2)设函数是否存在,对任意给定的非零实数,存在唯一的非零
实数使得成立,若存在,求的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分15分)已知函数
(Ⅰ)判断函数的奇偶性;
(Ⅱ)求函数的单调区间;
(Ⅲ)若关于的方有实数解,求实数的取值范围.

查看答案和解析>>

同步练习册答案