精英家教网 > 高中数学 > 题目详情
计算下列各式的值:
(1)lg4+lg25-lne2+20×2-2
(2)已知a
1
2
+a-
1
2
=5
,求
a1+a-1+2
a
3
2
+a-
3
2
-1
 的值.
分析:(1)利用指数与对数的运算性质,直接求解即可.
(2)利用立方和公式及完全平方公式将待求的式子用a
1
2
+a-
1
2
=5
表示,求出值.
解答:解:(1)lg4+lg25-lne2+20×2-2
=2lg2+2lg5-2+
1
4

=2-2+
1
4

=
1
4

(2)因为a
1
2
+a-
1
2
=5
,所以a1+a-1+2=(a
1
2
+a-
1
2
)
2
=25,
a
3
2
+a-
3
2
-1
=(a
1
2
+a-
1
2
)(a1+a-1-1)
=5×(23-1)=110
所以
a1+a-1+2
a
3
2
+a-
3
2
-1
=
25
110
=
5
22
点评:本题考查指数与对数的基本运算的性质,平方和公式与立方差公式的应用,考查计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

计算下列各式的值:
(1)71+log75
(2)10lg9+lg2
(3)alogabblogbc(其中a,b为不等于1的正数,c>0)

查看答案和解析>>

科目:高中数学 来源: 题型:

计算下列各式的值:
(1)
3(-4)3
-(
1
2
)
0
+0.25
1
2
×(
-1
2
)
-4
;      (2)
2lg2+lg3
1+
1
2
lg0.36+
1
3
lg8

查看答案和解析>>

科目:高中数学 来源: 题型:

计算下列各式的值.
(1)lg12.5-lg
5
8
+lg
1
2

(2)2log510+log50.25;
(3)2log32-log3
32
9
+log38-3.

查看答案和解析>>

科目:高中数学 来源: 题型:

计算下列各式的值:
(1)(0.0081) -
1
4
-[3×(
7
8
0]-1•[81-0.25+(3
3
8
 -
1
3
] -
1
2
-10×0.027 
1
3

(2)
(1-log63)2+log62•log618
log64

查看答案和解析>>

科目:高中数学 来源: 题型:

计算下列各式的值:
(1)lg24-(lg3+lg4)+lg5;
(2)已知tanα=2,求
sin(α+3π)+cos(π+α)sin(-α)-cos(π+α)
的值.

查看答案和解析>>

同步练习册答案