精英家教网 > 高中数学 > 题目详情

【题目】给图中ABCDEF六个区域进行染色,每个区域只染一种颜色,且相邻的区域不同色.若有4种颜色可供选择,则共有___种不同的染色方案.

【答案】96

【解析】

通过分析题目给出的图形,可知要完成给图中六个区域进行染色,最少需要3种颜色,即同色,同色,同色,由排列知识可得该类染色方法的种数;也可以4种颜色全部用上,即三组中有一组不同色,同样利用排列组合知识求解该种染法的方法种数,最后利用分类加法求和.

解:要完成给图中六个区域进行染色,染色方法可分两类,第一类是仅用三种颜色染色,

同色,同色,同色,则从四种颜色中取三种颜色有种取法,三种颜色染三个区域有种染法,共种染法;

第二类是用四种颜色染色,即中有一组不同色,则有3种方案不同色或不同色或不同色),先从四种颜色中取两种染同色区有种染法,剩余两种染在不同色区有2种染法,共有种染法.

由分类加法原理得总的染色种数为种.

故答案为:96

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,两圆外切于点T, PQ为的弦,直线PT、QT分别交于点R、S,分别过P、Q作的切线依次交于A、B、D、C,直线RD、SA分别交PQ于E、F。求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥中,底面是边长为4的正三角形,底面,点分别为的中点.

(1)求证:平面平面

(2)在线段上是否存在点,使得直线与平面所成的角的正弦值为?若存在,确定点的位置;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列个结论:

①棱长均相等的棱锥一定不是六棱锥;

②函数既不是奇函数又不是偶函数;

③若函数的值域为,则实数的取值范围是

④若函数满足条件,则的最小值为

其中正确的结论的序号是:______. (写出所有正确结论的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】举例说明简单随机抽样和分层随机抽样两种抽样方法中,无论使用哪种抽样方法,总体中的每个个体被抽到的概率都相等.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将直角三角形沿斜边上的高折成的二面角,已知直角边,那么下面说法正确的是_________

(1) 平面平面 (2)四面体的体积是

(3)二面角的正切值是 (4)与平面所成角的正弦值是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,平面底面.分别是的中点,求证:

(Ⅰ)底面

(Ⅱ)平面

(Ⅲ)平面平面.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左右顶点分别为,左焦点为,已知椭圆的离心率为,且过点.

(1)求椭圆的方程;

(2)若过点的直线与该椭圆交于两点,且线段的中点恰为点,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中是自然对数的底数.

1)求曲线处的切线方程;

2)设,求函数的单调区间;

3)设,求证:当时,函数恰有2个不同零点.

查看答案和解析>>

同步练习册答案