精英家教网 > 高中数学 > 题目详情
18.下列命题中,假命题是(  )
A.对任意双曲线C,C的离心率e>1
B.椭圆C:$\frac{{x}^{2}}{4}$$+\frac{{y}^{2}}{3}$=1的左、右焦点分别为F1,F2,在C上存在点P,使|PF1|+|PF2|=4
C.抛物线C:y2=4x的焦点为F,直线L:x=-2,在C上存在点P,点P到直线L的距离等于|PF|
D.椭圆C:$\frac{{x}^{2}}{4}$$+\frac{{y}^{2}}{3}$=1,直线l:y=kx+1,对任意实数k,直线l与椭圆C总有两个公共点

分析 A根据双曲线离心率的定义即可判断结论正确;
B根据椭圆的定义即可判断结论正确;
C根据抛物线与准线的定义即可判断结论错误;
D根据直线l恒过定点,且定点在椭圆C内部,即可判断结论正确.

解答 解:对于A,对任意双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1中,c=$\sqrt{{a}^{2}{+b}^{2}}$>a,
∴C的离心率为e=$\frac{c}{a}$>1,A正确;
对于B,椭圆C:$\frac{{x}^{2}}{4}$$+\frac{{y}^{2}}{3}$=1的左、右焦点分别为F1,F2
∴a2=4,∴a=2;
根据椭圆的定义知,在C上存在点P,使|PF1|+|PF2|=2a=4,B正确;
对于C,抛物线C:y2=4x的焦点为F,则F(1,0),
准线是x=-1,在C上存在点P,点P到直线x=-1的距离等于|PF|,
直线L:x=-2,在C上存在点P,点P到直线L的距离等于|PF|+1,∴C错误;
对于D,椭圆C:$\frac{{x}^{2}}{4}$$+\frac{{y}^{2}}{3}$=1,直线l:y=kx+1恒过A(0,1)点,
且点A在椭圆C内部,∴对任意实数k,直线l与椭圆C总有两个公共点,D正确.
故选:C.

点评 本题考查了圆锥曲线的定义、标准方程与应用问题,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.已知双曲线$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{{b}^{2}}$=1(b>0)的一条渐近线与直线x-2y+4=0垂直,则b=(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.求函数f(x)=-$\frac{1}{3}$x3+4x-1在[0,3]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.α,β,γ是三个不同的平面,m,n是两条不同的直线,下列命题正确的是(  )
A.若α∩β=m,n?α,m⊥n,则α⊥β
B.若α⊥β,α∩β=m,α∩γ=n,则m⊥n
C.若m不垂直平面α,则m不可能垂直于平面α内的无数条直线
D.若m⊥α,n⊥β,m∥n,则α∥β

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设焦点在x轴上的双曲线虚轴长为2,焦距为$2\sqrt{3}$,则双曲线的渐近线方程为(  )
A.$y=±\sqrt{2}x$B.y=±2xC.$y=±\frac{{\sqrt{2}}}{2}x$D.$y=±\frac{1}{2}x$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.在空间直角坐标系o-xyz中,A(0,1,0),B(1,1,1),C(0,2,1)确定的平面记为α,不经过点A的平面β的一个法向量为$\overrightarrow{n}$=(2,2,-2),则(  )
A.α∥βB.α⊥β
C.α,β相交但不垂直D.α,β所成的锐二面角为60°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.在平面直角坐标系xOy中,已知椭圆C1:$\frac{x^2}{36}+\frac{y^2}{4}$=1和C2:x2+$\frac{y^2}{9}$=1.P为C1上的动点,Q为C2上的动点,w是$\overrightarrow{OP}•\overrightarrow{OQ}$的最大值.记Ω={(P,Q)|P在C1上,Q在C2上,且$\overrightarrow{OP}•\overrightarrow{OQ}$=w},则Ω中元素个数为(  )
A.2个B.4个C.8个D.无穷个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知集合M={x|f(x)=$\frac{lg(2x-1)}{\sqrt{3x-2}}$},N={x|x${\;}^{-\frac{1}{3}}$>1},则集合M∩N等于(  )
A.$({\frac{2}{3},+∞})$B.(1,+∞)C.$({\frac{1}{2},\frac{2}{3}})$D.$({\frac{2}{3},1})$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若角α的终边与$\frac{π}{6}$的终边关于y轴对称,则角α的取值集合为$\{α|α=2kπ+\frac{5π}{6},k∈Z\}$.

查看答案和解析>>

同步练习册答案