| A. | $y=±\sqrt{2}x$ | B. | y=±2x | C. | $y=±\frac{{\sqrt{2}}}{2}x$ | D. | $y=±\frac{1}{2}x$ |
分析 根据题意,分析可得双曲线中b=1,c=$\sqrt{3}$,由双曲线的几何性质可得a的值,即可得双曲线的标准方程,进而计算可得双曲线的渐近线方程,即可得答案.
解答 解:根据题意,设焦点在x轴上的双曲线虚轴长为2,焦距为$2\sqrt{3}$,
即2b=2,2c=2$\sqrt{3}$,
则有b=1,c=$\sqrt{3}$,
则a=$\sqrt{{c}^{2}-{b}^{2}}$=$\sqrt{2}$,
则双曲线的标准方程为:$\frac{{x}^{2}}{2}$-$\frac{{y}^{2}}{1}$=1,
该双曲线的渐近线方程为为:y=±$\frac{\sqrt{2}}{2}$x;
故选:C.
点评 本题考查双曲线的几何性质,注意虚轴长、焦距等概念.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 对任意双曲线C,C的离心率e>1 | |
| B. | 椭圆C:$\frac{{x}^{2}}{4}$$+\frac{{y}^{2}}{3}$=1的左、右焦点分别为F1,F2,在C上存在点P,使|PF1|+|PF2|=4 | |
| C. | 抛物线C:y2=4x的焦点为F,直线L:x=-2,在C上存在点P,点P到直线L的距离等于|PF| | |
| D. | 椭圆C:$\frac{{x}^{2}}{4}$$+\frac{{y}^{2}}{3}$=1,直线l:y=kx+1,对任意实数k,直线l与椭圆C总有两个公共点 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $-\frac{1}{4}$ | B. | -1 | C. | $\frac{1}{4}$ | D. | 1 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com