精英家教网 > 高中数学 > 题目详情
3.已知向量$\overrightarrow{a}$=(k,cos$\frac{π}{3}$),向量$\overrightarrow{b}$=(sin$\frac{π}{6}$,tan$\frac{π}{4}$),若$\overrightarrow{a}∥\overrightarrow{b}$,则实数k的值为(  )
A.$-\frac{1}{4}$B.-1C.$\frac{1}{4}$D.1

分析 利用向量平行的性质直接求解.

解答 解:∵向量$\overrightarrow{a}$=(k,cos$\frac{π}{3}$),向量$\overrightarrow{b}$=(sin$\frac{π}{6}$,tan$\frac{π}{4}$),$\overrightarrow{a}∥\overrightarrow{b}$,
∴$\frac{k}{sin\frac{π}{6}}$=$\frac{cos\frac{π}{3}}{tan\frac{π}{4}}$,
解得实数k=$\frac{1}{4}$.
故选:C.

点评 本题考查实数值的求法,考查平面向量平行、三角函数等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.设焦点在x轴上的双曲线虚轴长为2,焦距为$2\sqrt{3}$,则双曲线的渐近线方程为(  )
A.$y=±\sqrt{2}x$B.y=±2xC.$y=±\frac{{\sqrt{2}}}{2}x$D.$y=±\frac{1}{2}x$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.f(n)=$\frac{1}{n}+\frac{1}{n+1}+\frac{1}{n+2}$+…$\frac{1}{n^2}$则(  )
A.f(n)中有n项,且f(2)=$\frac{1}{2}$+$\frac{1}{3}$B.f(n)中有n+1项,且f(2)=$\frac{1}{2}$+$\frac{1}{3}$+$\frac{1}{4}$
C.f(n)中有n2+n+1项,且f(2)=$\frac{1}{2}$+$\frac{1}{3}$+$\frac{1}{4}$D.f(n)中有n2-n+1项,且f(2)=$\frac{1}{2}$+$\frac{1}{3}$+$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知角θ的顶点与原点重合,始边与x轴的正半轴重合,终边在射线y=$\frac{1}{2}$x(x>0)上,则sin2θ=(  )
A.$\frac{2}{5}$B.$\frac{{\sqrt{5}}}{5}$C.$\frac{4}{5}$D.$\frac{{2\sqrt{5}}}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.要从1 000个球中抽取100个进行抽样分析,其中红球共有50个,如果用分层抽样的方法对球进行抽样,则应抽取红球(  )
A.33个B.20个C.5个D.10个

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若角α的终边与$\frac{π}{6}$的终边关于y轴对称,则角α的取值集合为$\{α|α=2kπ+\frac{5π}{6},k∈Z\}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设A、B分别为双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右顶点,P是双曲线C上异于A、B的任一点,设直线AP,BP的斜率分别为m,n,则$\frac{2a}{b}+ln|m|+ln|n|$取得最小值时,双曲线C的离心率为(  )
A.2B.$\sqrt{3}$C.$\sqrt{2}$D.$\sqrt{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若f(x)=cos(2x+$\frac{π}{3}$),则f'($\frac{π}{12}$)的值为(  )
A.1B.-1C.2D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知公差为正数的等差数列{an}的前n项和为Sn,且a2•a8=115,S9=126,数列{bn}的前n项和${T_n}={2^{n+1}}-2(n∈{N^*})$.
(Ⅰ)求数列{an}与{bn}的通项公式;
(Ⅱ)求数列{an•bn}的前n项和为Mn

查看答案和解析>>

同步练习册答案