| A. | $-\frac{1}{4}$ | B. | -1 | C. | $\frac{1}{4}$ | D. | 1 |
分析 利用向量平行的性质直接求解.
解答 解:∵向量$\overrightarrow{a}$=(k,cos$\frac{π}{3}$),向量$\overrightarrow{b}$=(sin$\frac{π}{6}$,tan$\frac{π}{4}$),$\overrightarrow{a}∥\overrightarrow{b}$,
∴$\frac{k}{sin\frac{π}{6}}$=$\frac{cos\frac{π}{3}}{tan\frac{π}{4}}$,
解得实数k=$\frac{1}{4}$.
故选:C.
点评 本题考查实数值的求法,考查平面向量平行、三角函数等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是基础题.
科目:高中数学 来源: 题型:选择题
| A. | $y=±\sqrt{2}x$ | B. | y=±2x | C. | $y=±\frac{{\sqrt{2}}}{2}x$ | D. | $y=±\frac{1}{2}x$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f(n)中有n项,且f(2)=$\frac{1}{2}$+$\frac{1}{3}$ | B. | f(n)中有n+1项,且f(2)=$\frac{1}{2}$+$\frac{1}{3}$+$\frac{1}{4}$ | ||
| C. | f(n)中有n2+n+1项,且f(2)=$\frac{1}{2}$+$\frac{1}{3}$+$\frac{1}{4}$ | D. | f(n)中有n2-n+1项,且f(2)=$\frac{1}{2}$+$\frac{1}{3}$+$\frac{1}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{2}{5}$ | B. | $\frac{{\sqrt{5}}}{5}$ | C. | $\frac{4}{5}$ | D. | $\frac{{2\sqrt{5}}}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 33个 | B. | 20个 | C. | 5个 | D. | 10个 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | $\sqrt{3}$ | C. | $\sqrt{2}$ | D. | $\sqrt{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com