精英家教网 > 高中数学 > 题目详情
14.f(n)=$\frac{1}{n}+\frac{1}{n+1}+\frac{1}{n+2}$+…$\frac{1}{n^2}$则(  )
A.f(n)中有n项,且f(2)=$\frac{1}{2}$+$\frac{1}{3}$B.f(n)中有n+1项,且f(2)=$\frac{1}{2}$+$\frac{1}{3}$+$\frac{1}{4}$
C.f(n)中有n2+n+1项,且f(2)=$\frac{1}{2}$+$\frac{1}{3}$+$\frac{1}{4}$D.f(n)中有n2-n+1项,且f(2)=$\frac{1}{2}$+$\frac{1}{3}$+$\frac{1}{4}$

分析 根据各项分母的特点计算项数,把n=2代入解析式得出f(2).

解答 解:f(n)中的项数为n2-n+1,
f(2)=$\frac{1}{2}+\frac{1}{3}+\frac{1}{4}$.
故选D.

点评 本题考查了函数值计算,归纳推理,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.若log6a=log7b,则a、b、1的大小关系可能是(  )
A.a>b>1B.b>1>aC.a>1>bD.1>a>b

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.椭圆C:$\frac{{x}^{2}}{9}$$+\frac{{y}^{2}}{16}$=1的两个焦点分别为F1,F2,过F1的直线l交C于A,B两点,若|AF2|+|BF2|=10,则|AB|的值为6.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知$\overrightarrow{a}$=(2,1),$\overrightarrow{b}$=(1,λ),若$\overrightarrow{a}$与$\overrightarrow{b}$的夹角θ为锐角,则λ的取值范围是(-2,$\frac{1}{2}$)∪($\frac{1}{2}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.某校有初中学生900人,高中学生1200人,教师120人,现用分层抽样的方法从所有师生中抽取一个容量为n的样本进行调查,如果从高中生中抽取了80人,那么n的值是(  )
A.120B.148C.140D.136

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,矩形AB′DE(AE=6,DE=5),被截去一角(即△BB′C),AB=3,∠ABC=135°,平面PAE⊥平面ABCDE,PA+PE=10.
(1)求五棱锥P-ABCDE的体积的最大值;
(2)在(1)的情况下,证明:BC⊥PB.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知函数$f(x)=2sin(2x+\frac{π}{3})$,x∈R,以下结论:
①f(x)的最小正周期是π;
②f(x)的图象关于点$(-\frac{π}{6},0)$对称;
③f(x)的图象关于直线$x=\frac{π}{6}$对称;
④f(x)在区间$(0,\frac{π}{3})$上是增函数;
其中正确命题的个数是(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知向量$\overrightarrow{a}$=(k,cos$\frac{π}{3}$),向量$\overrightarrow{b}$=(sin$\frac{π}{6}$,tan$\frac{π}{4}$),若$\overrightarrow{a}∥\overrightarrow{b}$,则实数k的值为(  )
A.$-\frac{1}{4}$B.-1C.$\frac{1}{4}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在空间,下列命题中正确的是(  )
A.没有公共点的两条直线平行B.与同一直线垂直的两条直线平行
C.垂直于同一平面的两条直线平行D.若直线a不在平面α内,则a∥平面α

查看答案和解析>>

同步练习册答案