精英家教网 > 高中数学 > 题目详情
6.已知函数$f(x)=2sin(2x+\frac{π}{3})$,x∈R,以下结论:
①f(x)的最小正周期是π;
②f(x)的图象关于点$(-\frac{π}{6},0)$对称;
③f(x)的图象关于直线$x=\frac{π}{6}$对称;
④f(x)在区间$(0,\frac{π}{3})$上是增函数;
其中正确命题的个数是(  )
A.4B.3C.2D.1

分析 运用正弦型函数的周期公式,即可判断①;由正弦函数的对称中心的特点,计算即可判断②;
由正弦函数的对称轴的特点,计算即可判断③;由正弦函数的增区间,解不等式即可判断④.

解答 解:函数$f(x)=2sin(2x+\frac{π}{3})$,
①f(x)的最小正周期是T=$\frac{2π}{2}$=π,故①对;
②由f(-$\frac{π}{6}$)=2sin(-$\frac{π}{3}$+$\frac{π}{3}$)=0,
可得f(x)的图象关于点$(-\frac{π}{6},0)$对称,故②对;
③由f($\frac{π}{6}$)=2sin($\frac{π}{3}$+$\frac{π}{3}$)=$\sqrt{3}$,不为最值,
f(x)的图象不关于直线$x=\frac{π}{6}$对称,故③错;
④由2kπ-$\frac{π}{2}$≤2x+$\frac{π}{3}$≤2kπ+$\frac{π}{2}$,k∈Z,可得kπ-$\frac{5π}{12}$≤x≤kπ+$\frac{π}{12}$,k∈Z,
则f(x)在区间(0,$\frac{π}{12}$)递增,在($\frac{π}{12}$,$\frac{π}{3}$)递减,故④错.
故选:C.

点评 本题考查三角函数的图象和性质,主要是周期和对称性、单调性的判断,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.若实数x,y满足不等式组$\left\{\begin{array}{l}{x-y+2≥0}\\{x+y-4≤0}\\{y≥2}\end{array}\right.$,则z=2x-y的最小值等于(  )
A.-1B.1C.2D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.设函数f(x)=$\sqrt{1-lgx}$的定义域为(0,10].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.f(n)=$\frac{1}{n}+\frac{1}{n+1}+\frac{1}{n+2}$+…$\frac{1}{n^2}$则(  )
A.f(n)中有n项,且f(2)=$\frac{1}{2}$+$\frac{1}{3}$B.f(n)中有n+1项,且f(2)=$\frac{1}{2}$+$\frac{1}{3}$+$\frac{1}{4}$
C.f(n)中有n2+n+1项,且f(2)=$\frac{1}{2}$+$\frac{1}{3}$+$\frac{1}{4}$D.f(n)中有n2-n+1项,且f(2)=$\frac{1}{2}$+$\frac{1}{3}$+$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.向量$\overrightarrow a$,$\overrightarrow b$满足$|\overrightarrow a+\overrightarrow b|=2\sqrt{3}|\overrightarrow a|$,且$(\overrightarrow a-\overrightarrow b)•\overrightarrow a=0$,则$\frac{{|{\overrightarrow a}|}}{{|{\overrightarrow b}|}}$为(  )
A.0B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知角θ的顶点与原点重合,始边与x轴的正半轴重合,终边在射线y=$\frac{1}{2}$x(x>0)上,则sin2θ=(  )
A.$\frac{2}{5}$B.$\frac{{\sqrt{5}}}{5}$C.$\frac{4}{5}$D.$\frac{{2\sqrt{5}}}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.要从1 000个球中抽取100个进行抽样分析,其中红球共有50个,如果用分层抽样的方法对球进行抽样,则应抽取红球(  )
A.33个B.20个C.5个D.10个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设A、B分别为双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右顶点,P是双曲线C上异于A、B的任一点,设直线AP,BP的斜率分别为m,n,则$\frac{2a}{b}+ln|m|+ln|n|$取得最小值时,双曲线C的离心率为(  )
A.2B.$\sqrt{3}$C.$\sqrt{2}$D.$\sqrt{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知函数y=f(x)定义域为[0,2],则函数$g(x)=\frac{{f({x^2})}}{{1+lg({x+1})}}$的定义域为(-1,-$\frac{9}{10}$)∪(-$\frac{9}{10}$,$\sqrt{2}$].

查看答案和解析>>

同步练习册答案