精英家教网 > 高中数学 > 题目详情
1.向量$\overrightarrow a$,$\overrightarrow b$满足$|\overrightarrow a+\overrightarrow b|=2\sqrt{3}|\overrightarrow a|$,且$(\overrightarrow a-\overrightarrow b)•\overrightarrow a=0$,则$\frac{{|{\overrightarrow a}|}}{{|{\overrightarrow b}|}}$为(  )
A.0B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{{\sqrt{3}}}{2}$

分析 对$|\overrightarrow a+\overrightarrow b|=2\sqrt{3}|\overrightarrow a|$两边平方,把$\overrightarrow{a}•\overrightarrow{b}$=${\overrightarrow{a}}^{2}$代入即可得出${\overrightarrow{a}}^{2}$,${\overrightarrow{b}}^{2}$的关系,从而得出结论.

解答 解:∵$(\overrightarrow a-\overrightarrow b)•\overrightarrow a=0$,∴${\overrightarrow{a}}^{2}$=$\overrightarrow{a}•\overrightarrow{b}$,
∵$|\overrightarrow a+\overrightarrow b|=2\sqrt{3}|\overrightarrow a|$,∴${\overrightarrow{a}}^{2}$+2$\overrightarrow{a}•\overrightarrow{b}$+${\overrightarrow{b}}^{2}$=12${\overrightarrow{a}}^{2}$,
∴${\overrightarrow{a}}^{2}$+2${\overrightarrow{a}}^{2}$+${\overrightarrow{b}}^{2}$=12${\overrightarrow{a}}^{2}$,
∴${\overrightarrow{b}}^{2}$=9${\overrightarrow{a}}^{2}$,
∴$\frac{{\overrightarrow{a}}^{2}}{{\overrightarrow{b}}^{2}}$=$\frac{|\overrightarrow{a}{|}^{2}}{|\overrightarrow{b}{|}^{2}}$=$\frac{1}{9}$,∴$\frac{{|{\overrightarrow a}|}}{{|{\overrightarrow b}|}}$=$\frac{1}{3}$.
故选B.

点评 本题考查了平面向量的数量积运算,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=$\frac{1+{x}^{2}}{1-{x}^{2}}$.
(Ⅰ)求函数f(x)的定义域;
(Ⅱ)判定f(x)的奇偶性并证明;
(Ⅲ)用函数单调性定义证明:f(x)在(1,+∞)上是增函数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知a>0,b>0,
(1)求证:$\frac{{a}^{2}}{b}$$+\frac{{b}^{2}}{a}$≥a+b
(2)求证:$\frac{1}{a}$$+\frac{4}{b}$$≥\frac{9}{a+b}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.某校有初中学生900人,高中学生1200人,教师120人,现用分层抽样的方法从所有师生中抽取一个容量为n的样本进行调查,如果从高中生中抽取了80人,那么n的值是(  )
A.120B.148C.140D.136

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知等差数列{an}中,2a2+a3+a5=20且前10项的和为S10=100,则数列{an}的公差d=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知函数$f(x)=2sin(2x+\frac{π}{3})$,x∈R,以下结论:
①f(x)的最小正周期是π;
②f(x)的图象关于点$(-\frac{π}{6},0)$对称;
③f(x)的图象关于直线$x=\frac{π}{6}$对称;
④f(x)在区间$(0,\frac{π}{3})$上是增函数;
其中正确命题的个数是(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若函数f(x)=$\sqrt{2}$sin(2x+φ)(|φ|<$\frac{π}{2}$)的图象关于直线x=$\frac{π}{12}$对称,当x1,x2∈(-$\frac{17}{12}$π,-$\frac{2π}{3}$),x1≠x2时,f(x1)=f(x2),则f(x1+x2)=$\frac{\sqrt{6}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知点A,B,C是单位圆O上圆周的三等分点,设$\overrightarrow{OA}$=$\overrightarrow{a}$,$\overrightarrow{OB}$=$\overrightarrow{b}$,$\overrightarrow{OC}$=$\overrightarrow{c}$
( I)求证:($\overrightarrow{a}-\overrightarrow{b}$)⊥$\overrightarrow{c}$
( II)若|t$\overrightarrow{a}$+$\overrightarrow{b}$+$\overrightarrow{c}$|=1,求实数t的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知数列{an}满足${S_n}=2{a_n}-{2^{n+1}}+n(n∈{N^*})$.
(1)求a2,a3
(2)是否存在实数λ,使数列$\{\frac{{{a_n}+λ}}{2^n}\}$为等差数列,若存在,求出请求出λ的值,若不存在,说明理由.

查看答案和解析>>

同步练习册答案