精英家教网 > 高中数学 > 题目详情
13.若函数f(x)=$\sqrt{2}$sin(2x+φ)(|φ|<$\frac{π}{2}$)的图象关于直线x=$\frac{π}{12}$对称,当x1,x2∈(-$\frac{17}{12}$π,-$\frac{2π}{3}$),x1≠x2时,f(x1)=f(x2),则f(x1+x2)=$\frac{\sqrt{6}}{2}$.

分析 由题意利用正弦函数的图象的对称性,求得φ值,可得函数的解析式,再根据当x1,x2∈(-$\frac{17}{12}$π,-$\frac{2π}{3}$),x1≠x2时,f(x1)=f(x2),可得函数f(x)的图象关于直线x=-$\frac{11π}{12}$ 对称,可得$\frac{{x}_{1}{+x}_{2}}{2}$=-$\frac{11π}{12}$,由此求得f(x1+x2)的值.

解答 解:函数f(x)=$\sqrt{2}$sin(2x+φ)(|φ|<$\frac{π}{2}$)的周期为$\frac{2π}{2}$=π,它的图象关于直线x=$\frac{π}{12}$对称,
∴$\frac{π}{6}$+φ=kπ+$\frac{π}{2}$,k∈Z,∴φ=$\frac{π}{3}$,故该函数的解析式为f(x)=$\sqrt{2}$sin(2x+$\frac{π}{3}$ ).
令2x+$\frac{π}{3}$=kπ+$\frac{π}{2}$,求得x=$\frac{kπ}{2}$+$\frac{π}{12}$,故f(x)图象的对称轴为x=k•$\frac{π}{2}$+$\frac{π}{12}$,k∈Z.
又当x1,x2∈(-$\frac{17}{12}$π,-$\frac{2π}{3}$),x1≠x2时,f(x1)=f(x2),故函数f(x)的图象关于直线x=-$\frac{11π}{12}$ 对称,
即$\frac{{x}_{1}{+x}_{2}}{2}$=-$\frac{11π}{12}$,则f(x1+x2)=f(-$\frac{11π}{6}$)=f($\frac{π}{6}$)=$\sqrt{2}$sin$\frac{2π}{3}$=$\frac{\sqrt{6}}{2}$,
故答案为:$\frac{\sqrt{6}}{2}$.

点评 本题主要考查正弦函数的图象的对称性,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.设A是单位圆O和x轴正半轴的交点,P,Q是圆O上两点,O为坐标原点,∠AOP=$\frac{π}{6}$,∠AOQ=α,α∈[0,$\frac{π}{2}$].
(1)若Q($\frac{3}{5}$,$\frac{4}{5}$),求cos(α-$\frac{π}{6}$)的值;
(2)设函数f(α)=sinα•($\overrightarrow{OP}$•$\overrightarrow{OQ}$),求f(α)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若△ABC的边BC上存在一点M(异于B,C),将△ABM沿AM翻折后使得AB⊥CM,则内角A,B,C必满足(  )
A.B≥90°B.B<90°C.C<90°D.A<90°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.向量$\overrightarrow a$,$\overrightarrow b$满足$|\overrightarrow a+\overrightarrow b|=2\sqrt{3}|\overrightarrow a|$,且$(\overrightarrow a-\overrightarrow b)•\overrightarrow a=0$,则$\frac{{|{\overrightarrow a}|}}{{|{\overrightarrow b}|}}$为(  )
A.0B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知$|{\vec a}|=4$,$|{\vec b}|=3$,且$(2\vec a-3\vec b)(2\vec a+\vec b)=61$,则$\vec a$在$\vec b$方向上的投影为-2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.要从1 000个球中抽取100个进行抽样分析,其中红球共有50个,如果用分层抽样的方法对球进行抽样,则应抽取红球(  )
A.33个B.20个C.5个D.10个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.给出下面四个函数:①y=cos|2x|;②y=|sinx|;③$y=cos(2x+\frac{π}{4})$;④$y=tan(2x-\frac{π}{3})$.其中最小正周期为π的有(  )
A.①②③B.②③④C.②③D.①④

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知{an}的各项为正数,其前n项和Sn满足${S_n}={(\frac{{{a_n}+1}}{2})^2}$,设bn=10-an(n∈N*).
(Ⅰ)求证:数列{an}是等差数列,并求{an}的通项公式;
(Ⅱ)设数列{bn}的前n项和为Tn,求Tn的最大值;
(Ⅲ)求数列{|bn|}的前n项和Hn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.-401是等差数列-5,-9,-13…的第(  )项.
A.101B.100C.99D.98

查看答案和解析>>

同步练习册答案