精英家教网 > 高中数学 > 题目详情
3.-401是等差数列-5,-9,-13…的第(  )项.
A.101B.100C.99D.98

分析 求出首项a1=-5,公差d=(-9)-(-5)=-4,从而an=-5+(n-1)×(-4)=-4n-1,由此能求出结果.

解答 解:等差数列-5,-9,-13…中,
首项a1=-5,公差d=(-9)-(-5)=-4,
∴an=-5+(n-1)×(-4)=-4n-1,
∵an=-4n-1=-401,∴n=100.
故-401是等差数列-5,-9,-13…的第100项.
故选:B.

点评 本题考查等差数列的某一项的判断,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.若函数f(x)=$\sqrt{2}$sin(2x+φ)(|φ|<$\frac{π}{2}$)的图象关于直线x=$\frac{π}{12}$对称,当x1,x2∈(-$\frac{17}{12}$π,-$\frac{2π}{3}$),x1≠x2时,f(x1)=f(x2),则f(x1+x2)=$\frac{\sqrt{6}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.平面向量$\overrightarrow{m}$=(2sinωx,$\sqrt{3}$),$\overrightarrow{n}$=(2cos(ωx+$\frac{π}{3}$),1)(ω>0),函数f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$的最小正周期是π.
(Ⅰ)求f(x)的解析式和对称轴方程; 
(Ⅱ)求f(x)在$[{-\frac{π}{4},\frac{π}{6}}]$上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知数列{an}满足${S_n}=2{a_n}-{2^{n+1}}+n(n∈{N^*})$.
(1)求a2,a3
(2)是否存在实数λ,使数列$\{\frac{{{a_n}+λ}}{2^n}\}$为等差数列,若存在,求出请求出λ的值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.满足条件$|{z-2i}|+|{z+1}|=\sqrt{5}$的点的轨迹是(  )
A.椭圆B.直线C.线段D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设不等式组$\left\{\begin{array}{l}2x+y≥2\\ x-2y≥-4\\ 3x-y≤3\end{array}\right.$,所表示的平面区域为M,若函数y=k(x+1)+1的图象经过区域M,则实数k的取值范围是(  )
A.$[{-\frac{1}{2},1})$B.$({-\frac{1}{2},1}]$C.$({-\frac{1}{2},1})$D.$[{-\frac{1}{2},1}]$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.在直角坐标系xOy中,以O为极点,x轴的正半轴为极轴,建立极坐标系.已知直线l1的极坐标为$\sqrt{2}$ρsin$(θ-\frac{π}{4})$=2 017,直线l2的参数方程为$\left\{\begin{array}{l}x=-2017+tcos\frac{π}{4}\\ y=2017+tsin\frac{π}{4}\end{array}\right.(t为参数)$,则l1与l2的位置关系为(  )
A.垂直B.平行C.相交但不垂直D.重合

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设曲线y=2x-x3在点(1,1)处的切线为l,点P(m,n)在l上,mn>0,则$\frac{1}{m}$+$\frac{4}{n}$的最小值为(  )
A.2B.3C.$\frac{9}{4}$D.$\frac{9}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知函数f(x)=$\left\{\begin{array}{l}{{(\frac{1}{2})}^{x},x≥1}\\{{lo{g}_{4}}^{x},0<x<1}\end{array}\right.$则f(2)=$\frac{1}{4}$.

查看答案和解析>>

同步练习册答案