精英家教网 > 高中数学 > 题目详情
13.已知函数f(x)=$\left\{\begin{array}{l}{{(\frac{1}{2})}^{x},x≥1}\\{{lo{g}_{4}}^{x},0<x<1}\end{array}\right.$则f(2)=$\frac{1}{4}$.

分析 由2≥1,得f(2)=($\frac{1}{2}$)2,由此能求出结果.

解答 解:∵函数f(x)=$\left\{\begin{array}{l}{{(\frac{1}{2})}^{x},x≥1}\\{{lo{g}_{4}}^{x},0<x<1}\end{array}\right.$,
∴f(2)=($\frac{1}{2}$)2=$\frac{1}{4}$.
故答案为:$\frac{1}{4}$.

点评 本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.-401是等差数列-5,-9,-13…的第(  )项.
A.101B.100C.99D.98

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知$0<α<\frac{3π}{4}$,且$sin(α-\frac{π}{4})=\frac{3}{5}$,则cos2α=$-\frac{24}{25}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分图象如图所示,则下列命题中的真命题是(  )
①将函数f(x)的图象向左平移$\frac{π}{3}$个单位,则所得函数的图象关于原点对称;
②将函数f(x)的图象向左平移$\frac{π}{6}$个单位,则所得函数的图象关于原点对称;
③当x∈[$\frac{π}{2}$,π]时,函数f(x)的最大值为$\sqrt{2}$;
④当x∈[$\frac{π}{2}$,π]时,函数f(x)的最大值为$\frac{{\sqrt{6}}}{2}$.
A.①③B.①④C.②④D.②③

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设函数$f(x)=sinx•cosx-\sqrt{3}cos({π+x})•cosx({x∈R})$.
(1)求f(x)的最小正周期;
(2)若函数y=f(x)的图象向右、向上分别平移$\frac{π}{4}、\frac{{\sqrt{3}}}{2}$个单位长度得到y=g(x)的图象,求y=g(x)在$({0,\frac{π}{4}}]$的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数$f(x)=3sin(\frac{x}{2}+\frac{π}{6})+3$
(1)用五点法画出它在一个周期内的闭区间上的图象;
(2)指出f(x)的周期、振幅、初相、单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.2016年高一新生入学后,为了了解新生学业水平,某区对新生进行了水平测试,随机抽取了50名新生的成绩,其相关数据统计如下:
分数段频数选择题得分24分以上(含24分)
[40,50)52
[50,60)104
[60,70)1512
[70,80)106
[80,90)54
[90,100)55
(Ⅰ)若从分数在[70,80),[80,90)的被调查的新生中各随机选取2人进行追踪调查,求恰好有2名新生选择题得分不足24分的概率;
(Ⅱ)在(Ⅰ)的条件下,记选中的4名新生中选择题得分不足24分的人数为X,求随机变量X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知不等式x3+x2-b$≤\frac{{e}^{x}+2ex}{ex}$对?x∈(0,1]恒成立,则实数b的取值范围是(  )
A.[-1,+∞)B.[1,+∞)C.[-1,1]D.(-∞,-1]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若数列{an}满足a1+2a2+3a3+…+nan=n2(n∈N*),则a7=(  )
A.$\frac{9}{5}$B.$\frac{11}{6}$C.$\frac{13}{7}$D.2

查看答案和解析>>

同步练习册答案