精英家教网 > 高中数学 > 题目详情
18.已知函数$f(x)=3sin(\frac{x}{2}+\frac{π}{6})+3$
(1)用五点法画出它在一个周期内的闭区间上的图象;
(2)指出f(x)的周期、振幅、初相、单调递增区间.

分析 (1)令$\frac{x}{2}$+$\frac{π}{6}$分别取0,$\frac{π}{2}$,π,$\frac{3π}{2}$,2π得到相应的x的值及函数值,列表作图即可;
(2)由f(x)=3sin($\frac{x}{2}$+$\frac{π}{6}$)+3,利用正弦函数的图象和性质可求得其周期、振幅、初相、单调递增区间.

解答 (本题满分为10分)
解:(1)令$\frac{x}{2}$+$\frac{π}{6}$分别取0,$\frac{π}{2}$,π,$\frac{3π}{2}$,2π,得到相应的x的值及函数值,列表如下:

$\frac{x}{2}$+$\frac{π}{6}$0$\frac{π}{2}$π$\frac{3π}{2}$2 π
x-$\frac{π}{3}$$\frac{2π}{3}$$\frac{5π}{3}$$\frac{8π}{3}$$\frac{11π}{3}$
y=3sin($\frac{x}{2}$+$\frac{π}{6}$)+336303
作出一个周期内的图象:

(2)∵f(x)=3sin($\frac{x}{2}$+$\frac{π}{6}$)+3,
∴其周期T=$\frac{2π}{\frac{1}{2}}$=4π,振幅A=3,初相φ=$\frac{π}{6}$,
由2kπ-$\frac{π}{2}$≤$\frac{x}{2}$+$\frac{π}{6}$≤2kπ+$\frac{π}{2}$,(k∈Z),得4kπ-$\frac{4π}{3}$≤x≤4kπ+$\frac{2π}{3}$,(k∈Z),
可得f(x)的单调递增区间为:[4kπ-$\frac{4π}{3}$,4kπ+$\frac{2π}{3}$],(k∈Z).

点评 本题考查用五点法作图,着重考查正弦函数的性质与作图能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.设不等式组$\left\{\begin{array}{l}2x+y≥2\\ x-2y≥-4\\ 3x-y≤3\end{array}\right.$,所表示的平面区域为M,若函数y=k(x+1)+1的图象经过区域M,则实数k的取值范围是(  )
A.$[{-\frac{1}{2},1})$B.$({-\frac{1}{2},1}]$C.$({-\frac{1}{2},1})$D.$[{-\frac{1}{2},1}]$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.为了得到函数y=sin(2x+$\frac{π}{3}$)的图象,只需将y=cos2x的图象上每一点(  )
A.向右平移$\frac{π}{6}$个单位长度B.向右平移$\frac{π}{12}$个单位长度
C.向左平移$\frac{π}{6}$个单位长度D.向左平移$\frac{π}{12}$个单位长度

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设向量$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$满足|$\overrightarrow{a}$|=2,|$\overrightarrow{a}$+$\overrightarrow{b}$|=6,|$\overrightarrow{b}$|=|$\overrightarrow{c}$|,且$\overrightarrow{b}$⊥$\overrightarrow{c}$,则|$\overrightarrow{b}$-$\overrightarrow{c}$|的取值范围为(  )
A.[4,8]B.[4$\sqrt{2}$,8$\sqrt{2}$]C.(4,8)D.(4$\sqrt{2}$,8$\sqrt{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知函数f(x)=$\left\{\begin{array}{l}{{(\frac{1}{2})}^{x},x≥1}\\{{lo{g}_{4}}^{x},0<x<1}\end{array}\right.$则f(2)=$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知函数$f(x)=\sqrt{3}sin2x-cos2x(x∈R)$,则将f(x)的图象向右平移$\frac{π}{3}$个单位所得曲线的一条对称轴的方程是(  )
A.x=πB.x=$\frac{π}{4}$C.x=$\frac{π}{2}$D.x=$\frac{π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知f(x)=Acos(ωx+φ)(其中A>0,ω>0,-$\frac{π}{2}$<φ<$\frac{π}{2}$)的图象如图所示,为得到的g(x)=Acosωx的图象,可以将f(x)的图象(  )
A.向左平移$\frac{π}{6}$B.向左平移$\frac{π}{12}$C.向右平移$\frac{π}{6}$D.向右平移$\frac{π}{12}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设数列{an}满足an+1=an+4,且a1=2,{bn}为等比数列,且a1=b1,b2(a2-a1)=b1
(1)求数列{an}和{bn}的通项公式;
(2)设cn=$\frac{{a}_{n}}{{b}_{n}}$,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.在长方体ABCD-A1B1C1D1中,AA1=6,AB=3,AD=8,点M是棱AD的中点,N在棱AA1上,且满足AN=2NA1,P是侧面四边形ADD1A1内一动点(含边界),若C1P∥平面CMN,则线段C1P长度最小值是(  )
A.$\sqrt{17}$B.4C.$\sqrt{15}$D.3

查看答案和解析>>

同步练习册答案