精英家教网 > 高中数学 > 题目详情
2.在长方体ABCD-A1B1C1D1中,AA1=6,AB=3,AD=8,点M是棱AD的中点,N在棱AA1上,且满足AN=2NA1,P是侧面四边形ADD1A1内一动点(含边界),若C1P∥平面CMN,则线段C1P长度最小值是(  )
A.$\sqrt{17}$B.4C.$\sqrt{15}$D.3

分析 取A1D1中点E,在DD1上取点F,使D1F=2DF,连结EF、C1E、C1F,则平面CMN∥平面C1EF,由此推导出P∈线段EF,当P与EF的中点O重合时,线段C1P长度取最小值PO,当P与点E或点F重合时,线段C1P长度取最大值PE或PF,由此能求出线段C1P的最小值.

解答 解:取A1D1中点E,在DD1上取点F,使D1F=2DF,连结EF、C1E、C1F,
则平面CMN∥平面C1EF,
∵是侧面四边形ADD1A1内一动点(含边界),C1P∥平面CMN,
∴P∈线段EF,
∴当P与EF的中点O重合时,线段C1P长度取最小值PO,
当P与点E或点F重合时,线段C1P长度取最大值PE或PF,
∵在长方体ABCD-A1B1C1D1中,AA1=6,AB=3,AD=8,
点M是棱AD的中点,点N在棱AA1上,且满足AN=2NA1
∴C1Pmax=C1E=C1F=$\sqrt{{3}^{2}+{4}^{2}}$=5,EF=4$\sqrt{2}$,
C1Pmin=PO=$\sqrt{{C}_{1}{E}^{2}-E{O}^{2}}$=$\sqrt{25-(2\sqrt{2})^{2}}=\sqrt{17}$.
∴线段C1P长度的最小值为$\sqrt{17}$.
故选:A.

点评 本题考查线段的最小值的求法,突出对运算能力、化归转化能力、空间想象的考查,是中档题,解题时要认真审题,注意空间思维能力的培养.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知函数$f(x)=3sin(\frac{x}{2}+\frac{π}{6})+3$
(1)用五点法画出它在一个周期内的闭区间上的图象;
(2)指出f(x)的周期、振幅、初相、单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知x=1是f(x)=$\left\{{\begin{array}{l}{({x^2}+ax){e^x},x>0}\\{bx,x≤0}\end{array}}$函数的极值点.
(Ⅰ)求的a值;
(Ⅱ)函数y=f(x)-m有2个零点,求m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.集合{(x,y)|$\left\{\begin{array}{l}{x=-2}\\{y=3}\end{array}\right.$}用列举法表示为{(-2,3)}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若数列{an}满足a1+2a2+3a3+…+nan=n2(n∈N*),则a7=(  )
A.$\frac{9}{5}$B.$\frac{11}{6}$C.$\frac{13}{7}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知椭圆C:$\frac{y^2}{a^2}+\frac{x^2}{b^2}=1$(a>b>0)的上、下两个焦点分别为F1,F2,过F1的直线交椭圆于M,N两点,且△MNF2的周长为8,椭圆C的离心率为$\frac{{\sqrt{3}}}{2}$.
(1)求椭圆C的标准方程;
(2)已知O为坐标原点,直线l:y=kx+m与椭圆C有且仅有一个公共点,点M',N'是直线l上的两点,且F1M'⊥l,F2N'⊥l,求四边形F1M'N'F2面积S的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=(x2-x+1)ex,其中e是自然对数的底数.
(Ⅰ)求f(x)的单调区间;
(Ⅱ)当x∈[-2,+∞)时,讨论函数f(x)的图象与直线y=m的公共点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.要得到函数f(x)=cos(2x-$\frac{π}{3}$)+1的图象,只需把y=2cos2x的图象(  )
A.向左平移$\frac{π}{3}$个单位B.向右平移$\frac{π}{6}$个单位
C.向上平移1个单位D.向上平移2个单位

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.某同学通过计算机测试的概率为$\frac{1}{3}$,他连续测试3次,且三次测试相互独立,其中恰有1次通过的概率为$\frac{4}{9}$.

查看答案和解析>>

同步练习册答案