精英家教网 > 高中数学 > 题目详情
10.集合{(x,y)|$\left\{\begin{array}{l}{x=-2}\\{y=3}\end{array}\right.$}用列举法表示为{(-2,3)}.

分析 根据题意,集合{(x,y)|$\left\{\begin{array}{l}{x=-2}\\{y=3}\end{array}\right.$}表示直线x=-2与y=3的交点,求出两直线的交点,用集合形式表示出来即可得答案.

解答 解:集合{(x,y)|$\left\{\begin{array}{l}{x=-2}\\{y=3}\end{array}\right.$}表示直线x=-2与y=3的交点,
即有{(x,y)|$\left\{\begin{array}{l}{x=-2}\\{y=3}\end{array}\right.$}={(-2,3)};
故答案为:{(-2,3)}.

点评 本题考查集合的表示方法,注意集合的元素性质即可.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.设向量$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$满足|$\overrightarrow{a}$|=2,|$\overrightarrow{a}$+$\overrightarrow{b}$|=6,|$\overrightarrow{b}$|=|$\overrightarrow{c}$|,且$\overrightarrow{b}$⊥$\overrightarrow{c}$,则|$\overrightarrow{b}$-$\overrightarrow{c}$|的取值范围为(  )
A.[4,8]B.[4$\sqrt{2}$,8$\sqrt{2}$]C.(4,8)D.(4$\sqrt{2}$,8$\sqrt{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设数列{an}满足an+1=an+4,且a1=2,{bn}为等比数列,且a1=b1,b2(a2-a1)=b1
(1)求数列{an}和{bn}的通项公式;
(2)设cn=$\frac{{a}_{n}}{{b}_{n}}$,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.数列{an}是各项为正的等比数列,首项a1=$\frac{1}{3}$,前3项的和S3=$\frac{13}{27}$.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设an•bn=n,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.把函数$y=sin(x+\frac{π}{6})$图象上各点的横坐标缩短到原来的$\frac{1}{2}$(纵坐标不变),再将图象向右平移$\frac{π}{3}$个单位,那么所得函数解析式为y=-cos2x.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=ax2-4(a为非零实数),设函数F(x)=$\left\{\begin{array}{l}{f(x)(x>0)}\\{-f(x)(x<0)}\end{array}\right.$
(1)若f(-2)=0,求F(x)的表达式;
(2)在(1)的条件下,解不等式1≤|F(x)|≤2;
(3)设mn<0,m+n>0,试判断F(m)+F(n)能否大于0?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.在长方体ABCD-A1B1C1D1中,AA1=6,AB=3,AD=8,点M是棱AD的中点,N在棱AA1上,且满足AN=2NA1,P是侧面四边形ADD1A1内一动点(含边界),若C1P∥平面CMN,则线段C1P长度最小值是(  )
A.$\sqrt{17}$B.4C.$\sqrt{15}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知$\frac{π}{2}$<α<π,3sin2α=2cosα,则cosα等于(  )
A.-$\frac{2}{3}$B.$\frac{\sqrt{6}}{4}$C.-$\frac{2\sqrt{2}}{3}$D.$\frac{3\sqrt{2}}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.△ABC的内角A,B,C所对的边分别为a,b,c,已知三个内角成等差数列,且A为等差中项,若a=3,b=5,则sin B=$\frac{5\sqrt{3}}{6}$.

查看答案和解析>>

同步练习册答案