精英家教网 > 高中数学 > 题目详情
13.已知x=1是f(x)=$\left\{{\begin{array}{l}{({x^2}+ax){e^x},x>0}\\{bx,x≤0}\end{array}}$函数的极值点.
(Ⅰ)求的a值;
(Ⅱ)函数y=f(x)-m有2个零点,求m的范围.

分析 (Ⅰ)求出函数的导数,是f′(1),得到关于a的方程,解出即可;
(Ⅱ)求出函数的导数,求出f(x)的最小值,通过讨论b的范围,结合函数的图象求出m的范围即可.

解答 解:(Ⅰ)∵x>0时,f′(x)=(x2+ax+2x+a)ex
∴f′(1)=(3+2a)e,
由题意得f′(1)=0,故a=-$\frac{3}{2}$.
(Ⅱ)由(Ⅰ)f(x)=(x2-$\frac{3}{2}$x)ex
问题可转化为y=f(x)与y=m图象有2个交点,
x>0时,f(x)=(x2-$\frac{3}{2}$x)ex
∴f′(x)=(x2+$\frac{1}{2}$x-$\frac{3}{2}$)ex
令f′(x)=0得x=1或x=-$\frac{3}{2}$(舍),
∴f(x)在(0,1)上递减,在(1,+∞)上递增,
∴当x>0时,f(x)min=f(1)=-$\frac{e}{2}$,
①当b<0时,f(x)的草图如图①:

故m>-$\frac{e}{2}$时满足题意;                                                 
②当b=0时f(x)的草图如图②:

故-$\frac{e}{2}$<m<0时满足题意;                                                 
③当b>0时f(x)的草图如图③:

故m=-$\frac{e}{2}$或m=0时满足题意;
综上所述:当b<0时,m>-$\frac{e}{2}$;
当b=0时,-$\frac{e}{2}$<m<0;
当b>0时,m=-$\frac{e}{2}$或m=0.

点评 本题考查了函数的单调性、最值问题,考查导数的应用以及分类讨论思想,转化思想,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.为了得到函数y=sin(2x+$\frac{π}{3}$)的图象,只需将y=cos2x的图象上每一点(  )
A.向右平移$\frac{π}{6}$个单位长度B.向右平移$\frac{π}{12}$个单位长度
C.向左平移$\frac{π}{6}$个单位长度D.向左平移$\frac{π}{12}$个单位长度

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知f(x)=Acos(ωx+φ)(其中A>0,ω>0,-$\frac{π}{2}$<φ<$\frac{π}{2}$)的图象如图所示,为得到的g(x)=Acosωx的图象,可以将f(x)的图象(  )
A.向左平移$\frac{π}{6}$B.向左平移$\frac{π}{12}$C.向右平移$\frac{π}{6}$D.向右平移$\frac{π}{12}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设数列{an}满足an+1=an+4,且a1=2,{bn}为等比数列,且a1=b1,b2(a2-a1)=b1
(1)求数列{an}和{bn}的通项公式;
(2)设cn=$\frac{{a}_{n}}{{b}_{n}}$,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知偶函数f(x)满足f(4+x)=f(4-x),且当x∈(0,4]时,f(x)=$\frac{{ln({2x})}}{x}$,关于x的不等式f2(x)+af(x)>0在[-200,200]上有且只有200个整数解,则实数a的取值范围是(  )
A.$({-\frac{1}{3}ln6,ln2}]$B.$({-ln2,-\frac{1}{3}ln6})$C.$({-ln2,-\frac{1}{3}ln6}]$D.$({-\frac{1}{3}ln6,ln2})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.数列{an}是各项为正的等比数列,首项a1=$\frac{1}{3}$,前3项的和S3=$\frac{13}{27}$.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设an•bn=n,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.把函数$y=sin(x+\frac{π}{6})$图象上各点的横坐标缩短到原来的$\frac{1}{2}$(纵坐标不变),再将图象向右平移$\frac{π}{3}$个单位,那么所得函数解析式为y=-cos2x.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.在长方体ABCD-A1B1C1D1中,AA1=6,AB=3,AD=8,点M是棱AD的中点,N在棱AA1上,且满足AN=2NA1,P是侧面四边形ADD1A1内一动点(含边界),若C1P∥平面CMN,则线段C1P长度最小值是(  )
A.$\sqrt{17}$B.4C.$\sqrt{15}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设a∈R,函数f(x)=|x2-2ax|,方程f(x)=ax+a的四个实数解满足x1<x2<x3<x4
(1)求a的取值范围;
(2)证明:f(x4)>$\frac{76}{3}$+8$\sqrt{10}$.

查看答案和解析>>

同步练习册答案