精英家教网 > 高中数学 > 题目详情
4.已知$0<α<\frac{3π}{4}$,且$sin(α-\frac{π}{4})=\frac{3}{5}$,则cos2α=$-\frac{24}{25}$.

分析 将已知等式左边利用两角和与差的正弦函数公式及特殊角的三角函数值化简,求出sinα-cosα的值,两边平方并利用同角三角函数间的基本关系化简求出2sinαcosα的值大于0,由α的范围,得到sinα大于0,cosα大于0,利用完全平方公式求出sinα+cosα的值,将所求式子利用二倍角的余弦函数公式化简,再利用平方差公式变形,将各自的值代入即可求出值.

解答 解:∵sin(α-$\frac{π}{4}$)=$\frac{\sqrt{2}}{2}$(sinα-cosα)=$\frac{3}{5}$,
∴sinα-cosα=$\frac{3\sqrt{2}}{5}$,
∴(sinα-cosα)2=1-2sinαcosα=$\frac{18}{25}$,即2sinαcosα=$\frac{7}{25}$>0,
∵$0<α<\frac{3π}{4}$,
∴sinα>0,cosα>0,即sinα+cosα>0,
∴(sinα+cosα)2=1+2sinαcosα=$\frac{32}{25}$,
∴sinα+cosα=$\frac{4\sqrt{2}}{5}$,
则cos2α=cos2α-sin2α=(cosα+sinα)(cosα-sinα)=$\frac{4\sqrt{2}}{5}$×(-$\frac{3\sqrt{2}}{5}$)=$-\frac{24}{25}$.
故答案为:$-\frac{24}{25}$.

点评 此题考查了二倍角的余弦函数公式,两角和与差的正弦函数公式,以及完全平方公式的运用,熟练掌握公式是解本题的关键,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.平面向量$\overrightarrow{m}$=(2sinωx,$\sqrt{3}$),$\overrightarrow{n}$=(2cos(ωx+$\frac{π}{3}$),1)(ω>0),函数f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$的最小正周期是π.
(Ⅰ)求f(x)的解析式和对称轴方程; 
(Ⅱ)求f(x)在$[{-\frac{π}{4},\frac{π}{6}}]$上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.在直角坐标系xOy中,以O为极点,x轴的正半轴为极轴,建立极坐标系.已知直线l1的极坐标为$\sqrt{2}$ρsin$(θ-\frac{π}{4})$=2 017,直线l2的参数方程为$\left\{\begin{array}{l}x=-2017+tcos\frac{π}{4}\\ y=2017+tsin\frac{π}{4}\end{array}\right.(t为参数)$,则l1与l2的位置关系为(  )
A.垂直B.平行C.相交但不垂直D.重合

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设曲线y=2x-x3在点(1,1)处的切线为l,点P(m,n)在l上,mn>0,则$\frac{1}{m}$+$\frac{4}{n}$的最小值为(  )
A.2B.3C.$\frac{9}{4}$D.$\frac{9}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知集合M={x||x|≤1},N={x|2x<1},则M∩N=(  )
A.[-1,0)B.[0,1)C.(-∞,0]D.(-∞,1]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.为了得到函数y=sin(2x+$\frac{π}{3}$)的图象,只需将y=cos2x的图象上每一点(  )
A.向右平移$\frac{π}{6}$个单位长度B.向右平移$\frac{π}{12}$个单位长度
C.向左平移$\frac{π}{6}$个单位长度D.向左平移$\frac{π}{12}$个单位长度

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知f(x)=$\overrightarrow{m}•\overrightarrow{n}$其中$\overrightarrow{m}$=(sinx,$\frac{1}{2}$),$\overrightarrow{n}$=(cosx,$\sqrt{3}$cos2x),将函数f(x)的图象向右平移$\frac{π}{12}$个单位,再将所得图象上各点的横坐标缩短到原来的$\frac{1}{2}$,纵坐标不变,得到函数g(x)的图象.
(1)若$x∈[{0,\frac{π}{12}}]$,求g(x)的单调区间;
(2)在△ABC中,角A,B,C所对的边分别是a,b,c,且f(B)=0,B∈(0,$\frac{π}{2}$),b=3,求a+c的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知函数f(x)=$\left\{\begin{array}{l}{{(\frac{1}{2})}^{x},x≥1}\\{{lo{g}_{4}}^{x},0<x<1}\end{array}\right.$则f(2)=$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知偶函数f(x)满足f(4+x)=f(4-x),且当x∈(0,4]时,f(x)=$\frac{{ln({2x})}}{x}$,关于x的不等式f2(x)+af(x)>0在[-200,200]上有且只有200个整数解,则实数a的取值范围是(  )
A.$({-\frac{1}{3}ln6,ln2}]$B.$({-ln2,-\frac{1}{3}ln6})$C.$({-ln2,-\frac{1}{3}ln6}]$D.$({-\frac{1}{3}ln6,ln2})$

查看答案和解析>>

同步练习册答案