分析 将已知等式左边利用两角和与差的正弦函数公式及特殊角的三角函数值化简,求出sinα-cosα的值,两边平方并利用同角三角函数间的基本关系化简求出2sinαcosα的值大于0,由α的范围,得到sinα大于0,cosα大于0,利用完全平方公式求出sinα+cosα的值,将所求式子利用二倍角的余弦函数公式化简,再利用平方差公式变形,将各自的值代入即可求出值.
解答 解:∵sin(α-$\frac{π}{4}$)=$\frac{\sqrt{2}}{2}$(sinα-cosα)=$\frac{3}{5}$,
∴sinα-cosα=$\frac{3\sqrt{2}}{5}$,
∴(sinα-cosα)2=1-2sinαcosα=$\frac{18}{25}$,即2sinαcosα=$\frac{7}{25}$>0,
∵$0<α<\frac{3π}{4}$,
∴sinα>0,cosα>0,即sinα+cosα>0,
∴(sinα+cosα)2=1+2sinαcosα=$\frac{32}{25}$,
∴sinα+cosα=$\frac{4\sqrt{2}}{5}$,
则cos2α=cos2α-sin2α=(cosα+sinα)(cosα-sinα)=$\frac{4\sqrt{2}}{5}$×(-$\frac{3\sqrt{2}}{5}$)=$-\frac{24}{25}$.
故答案为:$-\frac{24}{25}$.
点评 此题考查了二倍角的余弦函数公式,两角和与差的正弦函数公式,以及完全平方公式的运用,熟练掌握公式是解本题的关键,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 垂直 | B. | 平行 | C. | 相交但不垂直 | D. | 重合 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | 3 | C. | $\frac{9}{4}$ | D. | $\frac{9}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 向右平移$\frac{π}{6}$个单位长度 | B. | 向右平移$\frac{π}{12}$个单位长度 | ||
| C. | 向左平移$\frac{π}{6}$个单位长度 | D. | 向左平移$\frac{π}{12}$个单位长度 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $({-\frac{1}{3}ln6,ln2}]$ | B. | $({-ln2,-\frac{1}{3}ln6})$ | C. | $({-ln2,-\frac{1}{3}ln6}]$ | D. | $({-\frac{1}{3}ln6,ln2})$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com