5£®2016Äê¸ßÒ»ÐÂÉúÈëѧºó£¬ÎªÁËÁ˽âÐÂÉúѧҵˮƽ£¬Ä³Çø¶ÔÐÂÉú½øÐÐÁËˮƽ²âÊÔ£¬Ëæ»ú³éÈ¡ÁË50ÃûÐÂÉúµÄ³É¼¨£¬ÆäÏà¹ØÊý¾Ýͳ¼ÆÈçÏ£º
·ÖÊý¶ÎƵÊýÑ¡ÔñÌâµÃ·Ö24·ÖÒÔÉÏ£¨º¬24·Ö£©
[40£¬50£©52
[50£¬60£©104
[60£¬70£©1512
[70£¬80£©106
[80£¬90£©54
[90£¬100£©55
£¨¢ñ£©Èô´Ó·ÖÊýÔÚ[70£¬80£©£¬[80£¬90£©µÄ±»µ÷²éµÄÐÂÉúÖи÷Ëæ»úѡȡ2È˽øÐÐ×·×Ùµ÷²é£¬ÇóÇ¡ºÃÓÐ2ÃûÐÂÉúÑ¡ÔñÌâµÃ·Ö²»×ã24·ÖµÄ¸ÅÂÊ£»
£¨¢ò£©ÔÚ£¨¢ñ£©µÄÌõ¼þÏ£¬¼ÇÑ¡ÖеÄ4ÃûÐÂÉúÖÐÑ¡ÔñÌâµÃ·Ö²»×ã24·ÖµÄÈËÊýΪX£¬ÇóËæ»ú±äÁ¿XµÄ·Ö²¼ÁкÍÊýѧÆÚÍû£®

·ÖÎö £¨¢ñ£©ÓɱíÖª·ÖÊýÔÚ[70£¬80£©ÄÚµÄÓÐ10ÈË£¬Ñ¡ÔñÌâµÃ·Ö²»×ã24·ÖµÄÓÐ4ÈË£¬·ÖÊýÔÚ[80£¬90£©ÄÚµÄÓÐ5ÈË£¬Ñ¡ÔñÌâµÃ·Ö²»×ã24·ÖµÄÓÐ1ÈË£¬È»ºóÇó½â»¥³âʼþµÄ¸ÅÂÊ£®
£¨¢ò£©XµÄËùÓпÉÄÜȡֵΪ0£¬1£¬2£¬3£¬Çó³ö¸ÅÂÊ£¬µÃµ½XµÄ·Ö²¼ÁÐÈ»ºóÇó½âÆÚÍûÓë·½²î£®

½â´ð £¨10·Ö£©½â£º£¨¢ñ£©ÓɱíÖª·ÖÊýÔÚ[70£¬80£©ÄÚµÄÓÐ10ÈË£¬Ñ¡ÔñÌâµÃ·Ö²»×ã24·ÖµÄÓÐ4ÈË£¬
·ÖÊýÔÚ[80£¬90£©ÄÚµÄÓÐ5ÈË£¬Ñ¡ÔñÌâµÃ·Ö²»×ã24·ÖµÄÓÐ1ÈË£¬
ËùÒÔÇ¡ºÃÓÐ2ÃûѧÉúÑ¡ÔñÌâµÃ·Ö²»×ã24·ÖµÄ¸ÅÂÊʼþÓÉÁ½¸ö»¥³âʼþ¹¹³É£¬
¼´ËùÇó¸ÅÂÊΪ$P£¨{X=2}£©=\frac{C_4^1C_6^1}{{C_{10}^2}}•\frac{C_4^1C_1^1}{C_5^2}$$+\frac{C_4^2}{{C_{10}^2}}•\frac{C_4^2}{C_5^2}$=$\frac{24}{45}¡Á\frac{4}{10}+\frac{6}{45}$¡Á$\frac{6}{10}=\frac{22}{75}$£®
£¨¢ò£©XµÄËùÓпÉÄÜȡֵΪ0£¬1£¬2£¬3£®
$P£¨{X=0}£©=\frac{C_6^2}{{C_{10}^2}}•\frac{C_4^2}{C_5^2}$=$\frac{15}{45}¡Á\frac{6}{10}=\frac{1}{5}$£»
$P£¨{X=1}£©=\frac{C_6^2}{{C_{10}^2}}•\frac{C_4^1}{C_5^2}+$$\frac{C_4^1C_6^1}{{C_{10}^2}}•\frac{C_4^2}{C_5^2}=\frac{15}{45}¡Á\frac{4}{10}$$+\frac{24}{45}¡Á\frac{6}{10}=\frac{34}{75}$£»
$P£¨{X=2}£©=\frac{C_4^1C_6^1}{{C_{10}^2}}•\frac{C_4^1C_1^1}{C_5^2}$$+\frac{C_4^2}{{C_{10}^2}}•\frac{C_4^2}{C_5^2}$=$\frac{24}{45}¡Á\frac{4}{10}+\frac{6}{45}$¡Á$\frac{6}{10}=\frac{22}{75}$£®
$P£¨{X=3}£©=\frac{C_4^2}{{C_{10}^2}}•\frac{C_4^1}{C_5^2}$=$\frac{6}{45}¡Á\frac{4}{10}=\frac{4}{75}$£®
ËùÒÔXµÄ·Ö²¼ÁÐÊÇ

X0123
P$\frac{1}{5}$$\frac{34}{75}$$\frac{22}{75}$$\frac{4}{75}$
ËùÒÔXµÄÊýѧÆÚÍû$E£¨X£©=0¡Á\frac{1}{5}+1¡Á\frac{34}{75}$$+2¡Á\frac{22}{75}+3¡Á\frac{4}{75}=\frac{6}{5}$£®

µãÆÀ ±¾Ì⿼²éÀëÉ¢ÐÍËæ»ú±äÁ¿µÄÆÚÍûÓë·½²î£¬ÀëÉ¢ÐÍËæ»ú±äÁ¿µÄ·Ö²¼ÁУ¬¿¼²é·ÖÎöÎÊÌâ½â¾öÎÊÌâµÄÄÜÁ¦£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

15£®ÔÚÖ±½Ç×ø±êϵxOyÖУ¬ÒÔOΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«Öᣬ½¨Á¢¼«×ø±êϵ£®ÒÑÖªÖ±Ïßl1µÄ¼«×ø±êΪ$\sqrt{2}$¦Ñsin$£¨¦È-\frac{¦Ð}{4}£©$=2 017£¬Ö±Ïßl2µÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}x=-2017+tcos\frac{¦Ð}{4}\\ y=2017+tsin\frac{¦Ð}{4}\end{array}\right.£¨tΪ²ÎÊý£©$£¬Ôòl1Óël2µÄλÖùØÏµÎª£¨¡¡¡¡£©
A£®´¹Ö±B£®Æ½ÐÐC£®Ïཻµ«²»´¹Ö±D£®ÖغÏ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®ÒÑÖªf£¨x£©=$\overrightarrow{m}•\overrightarrow{n}$ÆäÖÐ$\overrightarrow{m}$=£¨sinx£¬$\frac{1}{2}$£©£¬$\overrightarrow{n}$=£¨cosx£¬$\sqrt{3}$cos2x£©£¬½«º¯Êýf£¨x£©µÄͼÏóÏòÓÒÆ½ÒÆ$\frac{¦Ð}{12}$¸öµ¥Î»£¬ÔÙ½«ËùµÃͼÏóÉϸ÷µãµÄºá×ø±êËõ¶Ìµ½Ô­À´µÄ$\frac{1}{2}$£¬×Ý×ø±ê²»±ä£¬µÃµ½º¯Êýg£¨x£©µÄͼÏó£®
£¨1£©Èô$x¡Ê[{0£¬\frac{¦Ð}{12}}]$£¬Çóg£¨x£©µÄµ¥µ÷Çø¼ä£»
£¨2£©ÔÚ¡÷ABCÖУ¬½ÇA£¬B£¬CËù¶ÔµÄ±ß·Ö±ðÊÇa£¬b£¬c£¬ÇÒf£¨B£©=0£¬B¡Ê£¨0£¬$\frac{¦Ð}{2}$£©£¬b=3£¬Çóa+cµÄ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

13£®ÒÑÖªº¯Êýf£¨x£©=$\left\{\begin{array}{l}{{£¨\frac{1}{2}£©}^{x}£¬x¡Ý1}\\{{lo{g}_{4}}^{x}£¬0£¼x£¼1}\end{array}\right.$Ôòf£¨2£©=$\frac{1}{4}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

20£®ÏÂÁÐÑ¡ÏîÖУ¬Ëµ·¨ÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®ÃüÌâ¡°p¡ÅqÎªÕæ¡±ÊÇÃüÌâ¡°p¡ÄqÎªÕæ¡±µÄ³ä·Ö²»±ØÒªÌõ¼þ
B£®ÃüÌâ¡°ÔÚ¡÷ABCÖУ¬A£¾30¡ã£¬ÔòsinA£¾$\frac{1}{2}$¡±µÄÄæ·ñÃüÌâÎªÕæÃüÌâ
C£®Èô·ÇÁãÏòÁ¿$\overrightarrow{a}$¡¢$\overrightarrow b$Âú×ã$|{\overrightarrow a+\overrightarrow b}|=|{\overrightarrow a}|-|{\overrightarrow b}|$£¬Ôò$\overrightarrow a$Óë$\overrightarrow b$¹²Ïß
D£®Éè{an}Êǹ«±ÈΪqµÄµÈ±ÈÊýÁУ¬Ôò¡°q£¾1¡±ÊÇ¡°{an}ΪµÝÔöÊýÁС±µÄ³ä·Ö±ØÒªÌõ¼þ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

10£®ÒÑÖªf£¨x£©=Acos£¨¦Øx+¦Õ£©£¨ÆäÖÐA£¾0£¬¦Ø£¾0£¬-$\frac{¦Ð}{2}$£¼¦Õ£¼$\frac{¦Ð}{2}$£©µÄͼÏóÈçͼËùʾ£¬ÎªµÃµ½µÄg£¨x£©=Acos¦ØxµÄͼÏ󣬿ÉÒÔ½«f£¨x£©µÄͼÏ󣨡¡¡¡£©
A£®Ïò×óÆ½ÒÆ$\frac{¦Ð}{6}$B£®Ïò×óÆ½ÒÆ$\frac{¦Ð}{12}$C£®ÏòÓÒÆ½ÒÆ$\frac{¦Ð}{6}$D£®ÏòÓÒÆ½ÒÆ$\frac{¦Ð}{12}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

17£®º¯Êýf£¨x£©=$\frac{1}{3}$x3-ax2+3x+4ÔÚ£¨-¡Þ£¬+¡Þ£©ÉÏÊÇÔöº¯Êý£¬ÔòʵÊýaµÄȡֵ·¶Î§ÊÇ[-$\sqrt{3}$£¬$\sqrt{3}$]£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

8£®ÒÑ֪żº¯Êýf£¨x£©Âú×ãf£¨4+x£©=f£¨4-x£©£¬ÇÒµ±x¡Ê£¨0£¬4]ʱ£¬f£¨x£©=$\frac{{ln£¨{2x}£©}}{x}$£¬¹ØÓÚxµÄ²»µÈʽf2£¨x£©+af£¨x£©£¾0ÔÚ[-200£¬200]ÉÏÓÐÇÒÖ»ÓÐ200¸öÕûÊý½â£¬ÔòʵÊýaµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®$£¨{-\frac{1}{3}ln6£¬ln2}]$B£®$£¨{-ln2£¬-\frac{1}{3}ln6}£©$C£®$£¨{-ln2£¬-\frac{1}{3}ln6}]$D£®$£¨{-\frac{1}{3}ln6£¬ln2}£©$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®³äÂúÆøµÄ³µÂÖÄÚÌ¥¿ÉÓÉÏÂÃæÄĸöÆ½ÃæÍ¼ÐÎÈÆÖáÐýת¶ø³É£¨¡¡¡¡£©
A£®B£®C£®D£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸