精英家教网 > 高中数学 > 题目详情
17.函数f(x)=$\frac{1}{3}$x3-ax2+3x+4在(-∞,+∞)上是增函数,则实数a的取值范围是[-$\sqrt{3}$,$\sqrt{3}$].

分析 利用函数的单调性和导数的关系,求得实数a的取值范围.

解答 解:∵函数f(x)=$\frac{1}{3}$x3-ax2+3x+4在(-∞,+∞)上是增函数,∴f′(x)=x2-2ax+3≥0恒成立,
∴△=4a2-12≤0,求得-$\sqrt{3}$≤a≤$\sqrt{3}$,
故答案为:[-$\sqrt{3}$,$\sqrt{3}$].

点评 本题主要考查函数的单调性和导数的关系,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.已知下列命题:
①若直线与平面有两个公共点,则直线在平面内;
②若直线l上有无数个点不在平面α内,则l∥α;
③若直线l与平面α相交,则l与平面α内的任意直线都是异面直线;
④如果两条异面直线中的一条与一个平面平行,则另一条直线一定与该平面相交;
⑤若直线l与平面α平行,则l与平面α内的直线平行或异面;
⑥若平面α∥平面β,直线a?α,直线b?β,则直线a∥b.
上述命题正确的是①⑤.(请把所有正确命题的序号填在横线上)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设函数$f(x)=sinx•cosx-\sqrt{3}cos({π+x})•cosx({x∈R})$.
(1)求f(x)的最小正周期;
(2)若函数y=f(x)的图象向右、向上分别平移$\frac{π}{4}、\frac{{\sqrt{3}}}{2}$个单位长度得到y=g(x)的图象,求y=g(x)在$({0,\frac{π}{4}}]$的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.2016年高一新生入学后,为了了解新生学业水平,某区对新生进行了水平测试,随机抽取了50名新生的成绩,其相关数据统计如下:
分数段频数选择题得分24分以上(含24分)
[40,50)52
[50,60)104
[60,70)1512
[70,80)106
[80,90)54
[90,100)55
(Ⅰ)若从分数在[70,80),[80,90)的被调查的新生中各随机选取2人进行追踪调查,求恰好有2名新生选择题得分不足24分的概率;
(Ⅱ)在(Ⅰ)的条件下,记选中的4名新生中选择题得分不足24分的人数为X,求随机变量X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.函数f(x)=2x3-9x2+12x+1的单调减区间是(  )
A.(1,2)B.(2,+∞)C.(-∞,1)D.(-∞,1)和(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知不等式x3+x2-b$≤\frac{{e}^{x}+2ex}{ex}$对?x∈(0,1]恒成立,则实数b的取值范围是(  )
A.[-1,+∞)B.[1,+∞)C.[-1,1]D.(-∞,-1]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.写出终边在$\sqrt{3}$x-y+2=0上的角的集合{α|$α=kπ+\frac{π}{3}$,k∈Z}..

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知等比数列{an}满足${a_1}=\frac{1}{4},{a_3}{a_5}=4({{a_4}-1})$.
(1)求an
(2)若{bn}满足bn=log2(16•an),求证$\left\{{\frac{1}{{{b_n}{b_{n+1}}}}}\right\}$的前n项和${S_n}<\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知三条直线l1:ax-y+a=0,l2:x+ay-a(a+1)=0,l3:(a+1)x-y+a+1=0,a>0.
(1)证明:这三条直线共有三个不同的交点;
(2)求这三条直线围成的三角形的面积的最大值.

查看答案和解析>>

同步练习册答案