精英家教网 > 高中数学 > 题目详情
1.已知三条直线l1:ax-y+a=0,l2:x+ay-a(a+1)=0,l3:(a+1)x-y+a+1=0,a>0.
(1)证明:这三条直线共有三个不同的交点;
(2)求这三条直线围成的三角形的面积的最大值.

分析 (1)分别求出直线l1与l3的交点A、l1与l2的交点B和l2与l3的交点C,且判断三点的坐标各不相同即可;
(2)根据题意画出图形,由AB⊥BC知点B在以AC为直径的半圆上,除A、C点外;由此求出△ABC的面积最大值.

解答 解:(1)证明:直线l1:ax-y+a=0恒过定点A(-1,0),
直线l3:(a+1)x-y+a+1=0恒过定点A(-1,0),
∴直线l1与l3交于点A;
又直线l2:x+ay-a(a+1)=0不过定点A,
且l1与l2垂直,必相交,设交点为B,则B($\frac{-1}{{a}^{2}+1}$,$\frac{{a}^{3}}{{a}^{2}+1}$);
l2与l3相交,交点为C(0,a+1);
∵a>0,∴三点A、B、C的坐标不相同,
即这三条直线共有三个不同的交点;
(2)根据题意,画出图形如图所示;

AB⊥BC,
∴点B在以AC为直径的半圆上,除A、C点外;
则△ABC的面积最大值为
S=$\frac{1}{2}$•|AC|•$\frac{1}{2}$|AC|=$\frac{1}{4}$×(1+(a+1)2)=$\frac{1}{4}$a2+$\frac{1}{2}$a+$\frac{1}{2}$.

点评 本题考查了直线的交点与应用问题,也考查了方程组与三角形面积的计算问题,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.函数f(x)=$\frac{1}{3}$x3-ax2+3x+4在(-∞,+∞)上是增函数,则实数a的取值范围是[-$\sqrt{3}$,$\sqrt{3}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在等比数列{an}中,a1+a2=6,a2+a3=12.
(1)求数列{an}的通项公式;
(2)若bn=log2an,求数列{bn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.充满气的车轮内胎可由下面哪个平面图形绕轴旋转而成(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知椭圆$\frac{y^2}{a^2}+\frac{x^2}{b^2}=1\;(a>b>0)$的两焦点与短轴的一个端点的连线构成等腰直角三角形,直线x+y+1=0与以椭圆C的上焦点为圆心,以椭圆的长半轴长为半径的圆相切.
(1)求椭圆C的方程;
(2)设P为椭圆C上一点,若过点M(0,2)的直线l与椭圆C相交于不同的两点S和T,满足$\overrightarrow{OS}+\overrightarrow{OT}=t\overrightarrow{OP}$(O为坐标原点),求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.如图,已知椭圆C1:$\frac{{x}^{2}}{10}$+y2=1,双曲线C2:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0),若以C1的长轴为直径的圆与C2的一条渐近线交于A,B两点,且C1与该渐近线的两交点将线段AB三等分,则C2的离心率为(  )
A.9B.5C.$\sqrt{5}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知定义在R上的函数$f(x)=\left\{\begin{array}{l}{x^2}+2,x∈[0,1)\\ 2-{x^2},x∈[-1,0)\end{array}\right.$且f(x+2)=f(x).若方程f(x)-kx-2=0有三个不相等的实数根,则实数k的取值范围是(-1,-$\frac{1}{3}$)∪($\frac{1}{3}$,1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图所示,椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率e=$\frac{\sqrt{3}}{2}$,A1、A2、B1、B2是椭圆的四个顶点,且$\overrightarrow{{A}_{1}{B}_{1}}$•$\overrightarrow{{A}_{2}{B}_{2}}$=3.
(1)求椭圆C的方程;
(2)P是椭圆C上异于顶点的任意点,直线B2P交x轴于点Q,直线A1B2交A2P于点E,设A2P的斜率为k,EQ的斜率为m,问:2m-k能不能为定值?若能为定值,请求出这个定值;若不能为定值,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.在单调递减的等差数列{an}中,若a3=1,a2a4=$\frac{3}{4}$,则a1=(  )
A.1B.2C.$\frac{3}{2}$D.3

查看答案和解析>>

同步练习册答案