精英家教网 > 高中数学 > 题目详情
11.已知角θ的顶点与原点重合,始边与x轴的正半轴重合,终边在射线y=$\frac{1}{2}$x(x>0)上,则sin2θ=(  )
A.$\frac{2}{5}$B.$\frac{{\sqrt{5}}}{5}$C.$\frac{4}{5}$D.$\frac{{2\sqrt{5}}}{5}$

分析 利用任意角的三角函数的定义求得tanθ的值,再利用同角三角函数的基本关系、二倍角公式求得sin2θ的值.

解答 解:角θ的顶点与原点重合,始边与x轴的正半轴重合,终边在射线y=$\frac{1}{2}$x(x>0)上,∴tanθ=$\frac{1}{2}$,
则sin2θ=$\frac{2sinθ•cosθ}{{sin}^{2}θ{+cos}^{2}θ}$=$\frac{2tanθ}{{tan}^{2}θ+1}$=$\frac{1}{\frac{1}{4}+1}$=$\frac{4}{5}$,
故选:C.

点评 本题主要考查任意角的三角函数的定义,同角三角函数的基本关系、二倍角公式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.在平行四边形ABCD中,AD=$\sqrt{2}$,AB=2,若$\overrightarrow{BF}$=$\overrightarrow{FC}$,则$\overrightarrow{AF}$•$\overrightarrow{DF}$=$\frac{7}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知$\overrightarrow{a}$=(2,1),$\overrightarrow{b}$=(1,λ),若$\overrightarrow{a}$与$\overrightarrow{b}$的夹角θ为锐角,则λ的取值范围是(-2,$\frac{1}{2}$)∪($\frac{1}{2}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,矩形AB′DE(AE=6,DE=5),被截去一角(即△BB′C),AB=3,∠ABC=135°,平面PAE⊥平面ABCDE,PA+PE=10.
(1)求五棱锥P-ABCDE的体积的最大值;
(2)在(1)的情况下,证明:BC⊥PB.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知函数$f(x)=2sin(2x+\frac{π}{3})$,x∈R,以下结论:
①f(x)的最小正周期是π;
②f(x)的图象关于点$(-\frac{π}{6},0)$对称;
③f(x)的图象关于直线$x=\frac{π}{6}$对称;
④f(x)在区间$(0,\frac{π}{3})$上是增函数;
其中正确命题的个数是(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.在△ABC中,若1+$\frac{tanA}{tanB}$=$\frac{2c}{b}$,则角A的大小为$\frac{π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知向量$\overrightarrow{a}$=(k,cos$\frac{π}{3}$),向量$\overrightarrow{b}$=(sin$\frac{π}{6}$,tan$\frac{π}{4}$),若$\overrightarrow{a}∥\overrightarrow{b}$,则实数k的值为(  )
A.$-\frac{1}{4}$B.-1C.$\frac{1}{4}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知{an}是公差为-2的等差数列,其前5项的和S5=0,那么a1等于4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.随机变量X等可能取值为1,2,3,…,n,如果$P(X<4)=\frac{1}{2}$,那么n=6.

查看答案和解析>>

同步练习册答案