精英家教网 > 高中数学 > 题目详情
3.在空间直角坐标系o-xyz中,A(0,1,0),B(1,1,1),C(0,2,1)确定的平面记为α,不经过点A的平面β的一个法向量为$\overrightarrow{n}$=(2,2,-2),则(  )
A.α∥βB.α⊥β
C.α,β相交但不垂直D.α,β所成的锐二面角为60°

分析 求出$\overrightarrow{AB}$=(1,0,1),$\overrightarrow{AC}$=(0,1,1),设平面α的法向量$\overrightarrow{m}$=(x,y,z),列出方程组,求出$\overrightarrow{m}$=(1,1,-1),由此能求出α∥β.

解答 解:∵A(0,1,0),B(1,1,1),C(0,2,1)确定的平面记为α,
∴$\overrightarrow{AB}$=(1,0,1),$\overrightarrow{AC}$=(0,1,1),
设平面α的法向量$\overrightarrow{m}$=(x,y,z),
则$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{AB}=x+z=0}\\{\overrightarrow{m}•\overrightarrow{AC}=y+z=0}\end{array}\right.$,取x=1,得$\overrightarrow{m}$=(1,1,-1),
∵不经过点A的平面β的一个法向量为$\overrightarrow{n}$=(2,2,-2),
$\overrightarrow{n}$=(2,2,-2)=2(1,1,-1)=2$\overrightarrow{m}$,
∴α∥β.
故选:A.

点评 本题考查两个平面的位置关系的判断,考查空间向量等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、考查函数与方程思想,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.如图,四边形ABCD为矩形,四边形ABEF为等腰梯形,平面ABCD⊥平面ABEF,AB∥EF,AB=2AF,∠BAF=60°,O,P分别为AB,CB的中点,M为底面△OBF的重心.
(1)求证:平面ADF⊥平面CBF;
(2)求证:PM∥平面AFC.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设d为点P(1,0)到直线x-2y+1=0的距离,则d=(  )
A.$\frac{\sqrt{5}}{5}$B.$\frac{2\sqrt{5}}{5}$C.$\frac{3\sqrt{5}}{5}$D.$\frac{4\sqrt{5}}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知函数f(x)的定义域为[0,3],则函数f(3x+6)的定义域是[-2,-1].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.下列命题中,假命题是(  )
A.对任意双曲线C,C的离心率e>1
B.椭圆C:$\frac{{x}^{2}}{4}$$+\frac{{y}^{2}}{3}$=1的左、右焦点分别为F1,F2,在C上存在点P,使|PF1|+|PF2|=4
C.抛物线C:y2=4x的焦点为F,直线L:x=-2,在C上存在点P,点P到直线L的距离等于|PF|
D.椭圆C:$\frac{{x}^{2}}{4}$$+\frac{{y}^{2}}{3}$=1,直线l:y=kx+1,对任意实数k,直线l与椭圆C总有两个公共点

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图所示的三棱锥P-ABC中,∠BAC=90°,PA⊥平面ABC,AB=AC=2,PA=4,E,F,G分别为棱PB,BC,AC的中点,点H在棱AP上,AH=1.
   (1)试判断$\overrightarrow{EG}$与$\overrightarrow{PA}$$+\overrightarrow{BC}$是否共线;
(2)求空间四面体EFGH的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.从甲、乙、丙、丁4名学生中随机选出2人,则甲被选中的概率为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在△ABC中,a,b,c分别为内角A,B,C的对边,bsinA=(3b-c)sinB.
(1)若2sinA=3sinB,且△ABC的周长为8,求c;
(2)若b=2,∠B=60°,求三角形ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知数列{an}的前n项和为Sn,且Sn,an的等差中项为1.
(Ⅰ) 写出a1,a2,a3
(Ⅱ)猜想an的表达式,并用数学归纳法证明.

查看答案和解析>>

同步练习册答案