精英家教网 > 高中数学 > 题目详情
15.从甲、乙、丙、丁4名学生中随机选出2人,则甲被选中的概率为$\frac{1}{2}$.

分析 先求出基本事件总数n=${C}_{4}^{2}=6$,再求出甲被选中包含的基本事件个数为m=${C}_{1}^{1}{C}_{3}^{1}$=3,由此能求出甲被选中的概率.

解答 解:从甲、乙、丙、丁4名学生中随机选出2人,
基本事件总数n=${C}_{4}^{2}=6$,
甲被选中包含的基本事件个数为m=${C}_{1}^{1}{C}_{3}^{1}$=3,
∴甲被选中的概率p=$\frac{m}{n}=\frac{3}{6}$=$\frac{1}{2}$.
故答案为:$\frac{1}{2}$.

点评 本题考查概率的求法,考查古典概型、排列组合等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.已知随机变量ξ~N(μ,σ2),P(ξ≤0)=P(ξ≥2)=0.34,则P(0≤ξ≤1)=0.16.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.α,β,γ是三个不同的平面,m,n是两条不同的直线,下列命题正确的是(  )
A.若α∩β=m,n?α,m⊥n,则α⊥β
B.若α⊥β,α∩β=m,α∩γ=n,则m⊥n
C.若m不垂直平面α,则m不可能垂直于平面α内的无数条直线
D.若m⊥α,n⊥β,m∥n,则α∥β

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.在空间直角坐标系o-xyz中,A(0,1,0),B(1,1,1),C(0,2,1)确定的平面记为α,不经过点A的平面β的一个法向量为$\overrightarrow{n}$=(2,2,-2),则(  )
A.α∥βB.α⊥β
C.α,β相交但不垂直D.α,β所成的锐二面角为60°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.在平面直角坐标系xOy中,已知椭圆C1:$\frac{x^2}{36}+\frac{y^2}{4}$=1和C2:x2+$\frac{y^2}{9}$=1.P为C1上的动点,Q为C2上的动点,w是$\overrightarrow{OP}•\overrightarrow{OQ}$的最大值.记Ω={(P,Q)|P在C1上,Q在C2上,且$\overrightarrow{OP}•\overrightarrow{OQ}$=w},则Ω中元素个数为(  )
A.2个B.4个C.8个D.无穷个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=x-($\frac{2}{3}$cosx-a)sinx,a∈R.
(1)求曲线y=f(x)在点($\frac{π}{2}$,f($\frac{π}{2}$))处的切线方程;
(2)若函数f(x)在R上单调递增,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知集合M={x|f(x)=$\frac{lg(2x-1)}{\sqrt{3x-2}}$},N={x|x${\;}^{-\frac{1}{3}}$>1},则集合M∩N等于(  )
A.$({\frac{2}{3},+∞})$B.(1,+∞)C.$({\frac{1}{2},\frac{2}{3}})$D.$({\frac{2}{3},1})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知tanα=-$\frac{{\sqrt{3}}}{3}$,α是第二象限角
(1)求α的其它三角函数的值;
(2)求$\frac{sinα+cosα}{sinα-cosα}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.如图,矩形ADFE,矩形CDFG,正方形ABCD两两垂直,且AB=2,若线段DE上存在点P使得GP⊥BP,则边CG长度的最小值为  (  )
A.4B.$4\sqrt{3}$C.2D.$2\sqrt{3}$

查看答案和解析>>

同步练习册答案