精英家教网 > 高中数学 > 题目详情
14.设d为点P(1,0)到直线x-2y+1=0的距离,则d=(  )
A.$\frac{\sqrt{5}}{5}$B.$\frac{2\sqrt{5}}{5}$C.$\frac{3\sqrt{5}}{5}$D.$\frac{4\sqrt{5}}{5}$

分析 利用点到直线的距离公式即可得出.

解答 解:d=$\frac{|1-0+1|}{\sqrt{{1}^{2}+(-2)^{2}}}$=$\frac{2\sqrt{5}}{5}$.
故选:B.

点评 本题考查了点到直线的距离公式,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.双曲线$\frac{{x}^{2}}{4}$-y=1的顶点到其渐近线的距离等于(  )
A.$\frac{2}{5}$B.$\frac{4}{5}$C.$\frac{2\sqrt{5}}{5}$D.$\frac{4\sqrt{5}}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知随机变量ξ~N(μ,σ2),P(ξ≤0)=P(ξ≥2)=0.34,则P(0≤ξ≤1)=0.16.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知正实数a,b满足2a2-ab-4=0,则3a-b的最小值为4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.求函数f(x)=-$\frac{1}{3}$x3+4x-1在[0,3]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设点P在△ABC的BC边所在的直线上从左到右运动,设△ABP与△ACP的外接圆面积之比为λ,当点P不与B,C重合时,(  )
A.λ先变小再变大B.当M为线段BC中点时,λ最大
C.λ先变大再变小D.λ是一个定值

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.α,β,γ是三个不同的平面,m,n是两条不同的直线,下列命题正确的是(  )
A.若α∩β=m,n?α,m⊥n,则α⊥β
B.若α⊥β,α∩β=m,α∩γ=n,则m⊥n
C.若m不垂直平面α,则m不可能垂直于平面α内的无数条直线
D.若m⊥α,n⊥β,m∥n,则α∥β

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.在空间直角坐标系o-xyz中,A(0,1,0),B(1,1,1),C(0,2,1)确定的平面记为α,不经过点A的平面β的一个法向量为$\overrightarrow{n}$=(2,2,-2),则(  )
A.α∥βB.α⊥β
C.α,β相交但不垂直D.α,β所成的锐二面角为60°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知tanα=-$\frac{{\sqrt{3}}}{3}$,α是第二象限角
(1)求α的其它三角函数的值;
(2)求$\frac{sinα+cosα}{sinα-cosα}$的值.

查看答案和解析>>

同步练习册答案