精英家教网 > 高中数学 > 题目详情
9.求函数f(x)=-$\frac{1}{3}$x3+4x-1在[0,3]上的最大值和最小值.

分析 求出函数的导数,解关于导函数的方程,求出函数的单调区间,从而求出函数的最值即可.

解答 解:由 f(x)=-$\frac{1}{3}$x3+4x-4,得f′(x)=-x2+4,
令f′(x)=0,则x=-2或x=2,
当x变化时,f′(x)和f(x)变化如下表:

x0(0,2)2(2,3)3
f′(x)+0-
f(x)-4$\frac{4}{3}$-1
故函数f(x) 在[0,3]上有最大值,
最大值为f(2)=$\frac{4}{3}$,最小值为f(0)=-4.

点评 本题考查了函数的单调性、最值问题,考查导数的应用,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.已知抛物线y2=16x,焦点为F,A(8,2)为平面上的一定点,P为抛物线上的一动点,则|PA|+|PF|的最小值为12.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.如图,等腰直角△ABC中,AB=AC=1,在边AB、AC上分别取D、E两点,沿线段DE折叠,顶点A恰好落在边BC上,则AD长度的最小值为$\sqrt{2}$-1..

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.某小组有3名男生和2名女生,从中任选2名同学参加演讲比赛,那么至多一名女生参加的概率是(  )
A.$\frac{1}{10}$B.$\frac{3}{10}$C.$\frac{3}{5}$D.$\frac{9}{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若log6a=log7b,则a、b、1的大小关系可能是(  )
A.a>b>1B.b>1>aC.a>1>bD.1>a>b

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设d为点P(1,0)到直线x-2y+1=0的距离,则d=(  )
A.$\frac{\sqrt{5}}{5}$B.$\frac{2\sqrt{5}}{5}$C.$\frac{3\sqrt{5}}{5}$D.$\frac{4\sqrt{5}}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.在平行四边形ABCD中,AD=$\sqrt{2}$,AB=2,若$\overrightarrow{BF}$=$\overrightarrow{FC}$,则$\overrightarrow{AF}$•$\overrightarrow{DF}$=$\frac{7}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.下列命题中,假命题是(  )
A.对任意双曲线C,C的离心率e>1
B.椭圆C:$\frac{{x}^{2}}{4}$$+\frac{{y}^{2}}{3}$=1的左、右焦点分别为F1,F2,在C上存在点P,使|PF1|+|PF2|=4
C.抛物线C:y2=4x的焦点为F,直线L:x=-2,在C上存在点P,点P到直线L的距离等于|PF|
D.椭圆C:$\frac{{x}^{2}}{4}$$+\frac{{y}^{2}}{3}$=1,直线l:y=kx+1,对任意实数k,直线l与椭圆C总有两个公共点

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,矩形AB′DE(AE=6,DE=5),被截去一角(即△BB′C),AB=3,∠ABC=135°,平面PAE⊥平面ABCDE,PA+PE=10.
(1)求五棱锥P-ABCDE的体积的最大值;
(2)在(1)的情况下,证明:BC⊥PB.

查看答案和解析>>

同步练习册答案