精英家教网 > 高中数学 > 题目详情
11.已知:多面体ABCDEF中,四边形ABCD为直角梯形,AB⊥BC,AB=BC=2AD=2,平面BCEF⊥平面ABCD,四边形BCEF为等腰梯形,EF=1,EC⊥AF,EF∥BC.
(1)求:E到平面ABCD的距离;
(2)求:二面角A-ED-C的余弦值.

分析 (1)取EF、BC中点M,O,连结MO,设MO=a,分别以OD、OC、OM为x,y,z轴,建立空间直角坐标系,利用向量法能求出E到平面ABCD的距离.
(2)分别求出平面ADEF的法向量和平面CDE的法向量,利用向量法能求出二面角A-ED-C的余弦值.

解答 解:(1)取EF、BC中点M,O,连结MO,设MO=a,
∵ABCD是等腰梯形,∴OM⊥BC,
∵平面BCEF⊥平面ABCD,平面ABCD∩平面BCEF=BC,OM?平面BCEF,
∴OM⊥平面ABCD,
分别以OD、OC、OM为x,y,z轴,建立空间直角坐标系,
A(2,-1,0),F(0,-$\frac{1}{2}$,a),C(0,1,0),E(0,$\frac{1}{2}$,a),
$\overrightarrow{AF}$=(-2,$\frac{1}{2}$,a),$\overrightarrow{CE}$=(0,-$\frac{1}{2}$,a),
∵EC⊥AF,∴$\overrightarrow{AF}•\overrightarrow{CE}$=-$\frac{1}{4}+{a}^{2}$=0,
解得a=$\frac{1}{2}$(a>0),
∴E到平面ABCD的距离为$\frac{1}{2}$.
(2)由(1)得A(2,-1,0),D(2,0,0),C(0,1,0),E(0,$\frac{1}{2}$,$\frac{1}{2}$),F(0,-$\frac{1}{2}$,$\frac{1}{2}$),
$\overrightarrow{AE}$=(-2,$\frac{3}{2}$,$\frac{1}{2}$),$\overrightarrow{AD}$=(0,1,0),$\overrightarrow{CE}$=(0,-$\frac{1}{2}$,$\frac{1}{2}$),$\overrightarrow{CD}$=(2,-1,0),
设平面ADEF的法向量$\overrightarrow{n}$=(x,y,z),
则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{AE}=-2x+\frac{3}{2}y+\frac{1}{2}z=0}\\{\overrightarrow{n}•\overrightarrow{AD}=y=0}\end{array}\right.$,取x=1,得$\overrightarrow{n}$=(1,0,4),
设平面CDE的法向量$\overrightarrow{m}$=(a,b,c),
则$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{CD}=2a-b=0}\\{\overrightarrow{m}•\overrightarrow{CE}=-\frac{1}{2}b+\frac{1}{2}c=0}\end{array}\right.$,取a=1,得$\overrightarrow{m}$=(1,2,2),
cos<$\overrightarrow{m},\overrightarrow{n}$>=$\frac{\overrightarrow{m}•\overrightarrow{n}}{|\overrightarrow{m}|•|\overrightarrow{n}|}$=$\frac{1+8}{\sqrt{17}•\sqrt{9}}$=$\frac{3\sqrt{17}}{17}$,
∵二面角A-ED-C的平面角是钝角,∴二面角A-ED-C的余弦值为-$\frac{3\sqrt{17}}{17}$.

点评 本题考查点到平面的距离的求法,考查二面角的余弦值的求法,是中档题,解题时要认真审题,注意向量法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.设函数f′(x)是偶函数f(x)(x∈(-∞,0)∪(0,+∞)的导函数,f(-1)=0,当x>0时,xf′(x)-f(x)<0,则使得f(x)>0成立的x的取值范围是(  )
A.(-∞,-1)∪(0,1)B.(-1,0)∪(1,+∞)C.(-1,0)∪(0,1)D.(0,1)∪(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.在函数y=xlnx的图象上的点A(1,0)处的切线方程是y=x-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.为了解甲、乙两个班级某次考试的数学成绩(单位:分),从甲、乙两个班级中分别随机抽取5名学生的成绩作样本,如图是样本的茎叶图,规定:成绩不低于120分时为优秀成绩.
(1)从甲班的样本中有放回的随机抽取2个数据,求其中只有一个优秀成绩的概率;
(2)从甲、乙两个班级的样本中分别抽取2名学生的成绩,记获优秀成绩的总人数为X,求X的分布列.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,长方体ABCD-A1B1C1D1中,底面ABCD是正方形,AA1=2AB=2,E是DD1上的一点,且满足B1D⊥平面ACE.
(Ⅰ)求证:A1D⊥AE;
(Ⅱ)求二面角D-AE-C的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,四棱柱ABCD-A1B1C1D1的底面ABCD是平行四边形,且AB=1,BC=2,∠ABC=60°,E为BC的中点,AA1⊥平面ABCD.
(Ⅰ)证明:平面A1AE⊥平面A1DE;
(Ⅱ)若DE=A1E,试求二面角E-A1C-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,四棱锥P-ABCD中,底面ABCD为菱形,PA⊥BD.
(1)证明:PD=PB;
(2)若PD⊥PB,∠DAB=60°,PA=AD,求二面角B-PA-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,在三棱锥P-ABC中,PA⊥平面ABC,AB⊥AC,PA=AC=3,AB=$\frac{3}{2}$,BE=$\frac{1}{2}$EC,AD=2DC.
(1)证明:DE⊥平面PAE;
(2)求二面角A-PE-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.如图,某几何体的正视图和侧视图都是正三角形,俯视图是圆,若该几何体的表面积S=π,则它的体积V=(  )
A.πB.$\frac{π}{3}$C.$\frac{π}{9}$D.$\frac{π}{27}$

查看答案和解析>>

同步练习册答案