精英家教网 > 高中数学 > 题目详情
20.为了解甲、乙两个班级某次考试的数学成绩(单位:分),从甲、乙两个班级中分别随机抽取5名学生的成绩作样本,如图是样本的茎叶图,规定:成绩不低于120分时为优秀成绩.
(1)从甲班的样本中有放回的随机抽取2个数据,求其中只有一个优秀成绩的概率;
(2)从甲、乙两个班级的样本中分别抽取2名学生的成绩,记获优秀成绩的总人数为X,求X的分布列.

分析 (1)由茎叶图知甲班样本的5个数据中优秀成绩有2个,非优秀成绩有3个,由此能求出从甲班的样本中有放回的随机抽取2个数据,其中只有一个优秀成绩的概率.
(2)由茎叶图知甲班样本的5个数据中优秀成绩有2个,非优秀成绩有3个,乙班样本的5个数据中优秀成绩有1个,非优秀成绩有4个,X的可能取值为0,1,2,3,分别求出相应的概率,由此能求出X的分布列.

解答 解:(1)由茎叶图知甲班样本的5个数据中优秀成绩有2个,非优秀成绩有3个,
从甲班的样本中有放回的随机抽取2个数据,
基本事件总数n=5×5=25,
其中只有一个优秀成绩包含的基本事件个数为:
m=2×3+3×2=12,
∴其中只有一个优秀成绩的概率p=$\frac{m}{n}$=$\frac{12}{25}$.
(2)由茎叶图知甲班样本的5个数据中优秀成绩有2个,非优秀成绩有3个,
乙班样本的5个数据中优秀成绩有1个,非优秀成绩有4个,
∴X的可能取值为0,1,2,3,
P(X=0)=$\frac{{C}_{3}^{2}}{{C}_{5}^{2}}•\frac{{C}_{4}^{2}}{{C}_{5}^{2}}$=$\frac{18}{100}$,
P(X=1)=$\frac{{C}_{3}^{1}{C}_{2}^{1}}{{C}_{5}^{2}}•\frac{{C}_{4}^{2}}{{C}_{5}^{2}}+\frac{{C}_{3}^{2}}{{C}_{5}^{2}}•\frac{{C}_{4}^{1}{C}_{1}^{1}}{{C}_{5}^{2}}$=$\frac{48}{100}$,
P(X=2)=$\frac{{C}_{3}^{1}{C}_{2}^{1}}{{C}_{5}^{2}}•\frac{{C}_{4}^{1}{C}_{1}^{1}}{{C}_{5}^{2}}+\frac{{C}_{2}^{2}}{{C}_{5}^{2}}•\frac{{C}_{4}^{2}}{{C}_{5}^{2}}$=$\frac{30}{100}$,
P(X=3)=$\frac{{C}_{2}^{2}}{{C}_{5}^{2}}•\frac{{C}_{4}^{1}{C}_{1}^{1}}{{C}_{5}^{2}}$=$\frac{4}{100}$,
∴X的分布列为:

 X 0 1 2 3
 P $\frac{18}{100}$ $\frac{48}{100}$ $\frac{30}{100}$ $\frac{4}{100}$

点评 本题考查概率的求法,考查离散型随机变量的分布列和数学期望的求法,是中档题,解题时要认真审题,注意排列组合知识的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.已知两个变量有比较好的线性相关关系,可以用回归直线来近似刻画它们之间的关系,关于回归直线的方程,有下述结论:
①回归方程只适用于我们所研究的样本的总体;
②建立的回归方程一般都有时间性;
③样本取值的范围会影响回归方程的适用范围.
其中正确结论的个数为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知函数f(x)为偶函数,且当x>0时,f′(x)=(x-1)(x-2),则下列关系一定成立的是(  )
A.f(1)<f(2)B.f(0)>f(-1)C.f(-2)<f(1)D.f(-1)<f(2)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.函数y=2sin(πx+$\frac{π}{2}}$)的最小正周期是2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设a=n(n-1)(n-2)…(n-50),则a可表示为(  )
A.${A}_{n}^{51}$B.${C}_{n}^{51}$C.${A}_{n}^{50}$D.${C}_{n}^{50}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若奇函数f(x)满足对任意x∈R都有f(2+x)+f(2-x)=0,且f(1)=9,则f(2014)+f(2015)+f(2016)的值为-9.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知:多面体ABCDEF中,四边形ABCD为直角梯形,AB⊥BC,AB=BC=2AD=2,平面BCEF⊥平面ABCD,四边形BCEF为等腰梯形,EF=1,EC⊥AF,EF∥BC.
(1)求:E到平面ABCD的距离;
(2)求:二面角A-ED-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,在菱形ABCD中,∠BAD=60°,平面BDEF⊥平面ABCD,四边形BDEF是正方形,点M在线段EF上,$\overrightarrow{EM}$=λ$\overrightarrow{EF}$.
(Ⅰ)当λ=$\frac{1}{2}$,求证:BM∥平面ACE;
(Ⅱ)如二面角A-BM-C的平面角的余弦值为-$\frac{7}{13}$,求实数λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知三棱锥A-BCD中,AD⊥面ABC,∠BAC=120°,AB=AD=AC=2,求该棱锥的外接球半径.

查看答案和解析>>

同步练习册答案