精英家教网 > 高中数学 > 题目详情
8.函数y=2sin(πx+$\frac{π}{2}}$)的最小正周期是2.

分析 利用函数y=Asin(ωx+φ)的周期为$\frac{2π}{ω}$,得出结论.

解答 解:函数y=2sin(πx+$\frac{π}{2}}$)的最小正周期是$\frac{2π}{π}$=2,
故答案为:2.

点评 本题主要考查函数y=Asin(ωx+φ)的周期性,利用了函数y=Asin(ωx+φ)的周期为$\frac{2π}{ω}$,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.设D为△ABC所在平面内一点,且$\overrightarrow{BD}$=3$\overrightarrow{CD}$,则(  )
A.$\overrightarrow{AD}$=-$\frac{1}{3}$$\overrightarrow{AB}$+$\frac{4}{3}$$\overrightarrow{AC}$B.$\overrightarrow{AD}$=$\frac{4}{3}$$\overrightarrow{AB}$-$\frac{1}{3}$$\overrightarrow{AC}$C.$\overrightarrow{AD}$=$\frac{3}{2}$$\overrightarrow{AB}$-$\frac{1}{2}$$\overrightarrow{AC}$D.$\overrightarrow{AD}$=-$\frac{1}{2}$$\overrightarrow{AB}$+$\frac{3}{2}$$\overrightarrow{AC}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.双曲线$\frac{{x}^{2}}{64}$-$\frac{{y}^{2}}{36}$=1的离心率为(  )
A.$\frac{4}{5}$B.$\frac{5}{4}$C.$\frac{3}{4}$D.$\frac{4}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若变量x、y满足约束条件:$\left\{\begin{array}{l}{x+y≥1}\\{y-x≤1}\\{x≤1}\end{array}\right.$,则y-2x的最大值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.在函数y=xlnx的图象上的点A(1,0)处的切线方程是y=x-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设函数f(x)=Asin(ωx+ϕ)(A,ω,ϕ为常数,且A>0,ω>0,0<ϕ<π)的部分图象如图所示.
(1)求A,ω,ϕ的值;
(2)当x∈[0,$\frac{π}{2}$]时,求f(x)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.为了解甲、乙两个班级某次考试的数学成绩(单位:分),从甲、乙两个班级中分别随机抽取5名学生的成绩作样本,如图是样本的茎叶图,规定:成绩不低于120分时为优秀成绩.
(1)从甲班的样本中有放回的随机抽取2个数据,求其中只有一个优秀成绩的概率;
(2)从甲、乙两个班级的样本中分别抽取2名学生的成绩,记获优秀成绩的总人数为X,求X的分布列.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,四棱柱ABCD-A1B1C1D1的底面ABCD是平行四边形,且AB=1,BC=2,∠ABC=60°,E为BC的中点,AA1⊥平面ABCD.
(Ⅰ)证明:平面A1AE⊥平面A1DE;
(Ⅱ)若DE=A1E,试求二面角E-A1C-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,正方形ABCD边长为2,以A为圆心、DA为半径的圆弧与以BC为直径的半圆O交于点F,连接BF并延长交CD于点E.
(1)求证:E是CD的中点;(2)求EF•FB的值.

查看答案和解析>>

同步练习册答案