精英家教网 > 高中数学 > 题目详情
17.如图,正方形ABCD边长为2,以A为圆心、DA为半径的圆弧与以BC为直径的半圆O交于点F,连接BF并延长交CD于点E.
(1)求证:E是CD的中点;(2)求EF•FB的值.

分析 (1)由题意得EA为圆D的切线,由切割线定理,得EA2=EF•EC,EB2=EF•EC,由此能证明AE=EB.
(2)连结BF,得BF⊥EC,在RT△EBC中,由射影定理得EF•FC=BF2,由此能求出结果

解答 解:(1)由题可知$\widehat{BD}$是以为A圆心,DA为半径作圆,而ABCD为正方形,
∴ED为圆A的切线
依据切割线定理得ED2=EF•EB …(2分)
∵圆O以BC 为直径,∴EC是圆O的切线,
同样依据切割线定理得EC2=EF•EB…(4分)
故EC=ED∴E为CD的中点.…(5分)
(2)连结CF,
∵BC为圆O的直径,
∴CF⊥BF  …(6分)
由${S_{△BCE}}=\frac{1}{2}BC×CE=\frac{1}{2}BE×CF$得$CF=\frac{1×2}{{\sqrt{5}}}=\frac{{2\sqrt{5}}}{5}$…(8分)
又在Rt△BCE中,由射影定理得$EF•FB=C{F^2}=\frac{4}{5}$.…(10分)

点评 本题考查与圆有关的线段相等的证明,考查两线段乘积的求法,解题时要注意射影定理和切割线定理的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.函数y=2sin(πx+$\frac{π}{2}}$)的最小正周期是2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,在菱形ABCD中,∠BAD=60°,平面BDEF⊥平面ABCD,四边形BDEF是正方形,点M在线段EF上,$\overrightarrow{EM}$=λ$\overrightarrow{EF}$.
(Ⅰ)当λ=$\frac{1}{2}$,求证:BM∥平面ACE;
(Ⅱ)如二面角A-BM-C的平面角的余弦值为-$\frac{7}{13}$,求实数λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=e2x-1-2x-kx2
(Ⅰ)当k=0时,求f(x)的单调区间;
(Ⅱ)若x≥0时,f(x)≥0恒成立,求k的取值范围.
(Ⅲ)试比较$\frac{{{e^{2n}}-1}}{{{e^2}-1}}$与$\frac{{2{n^3}+n}}{3}$(n∈N*)的大小关系,并给出证明:(${1^2}+{2^2}+{3^2}+…+{n^2}=\frac{n(n+1)(2n+1)}{6}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.一个棱锥的三视图及其尺寸如图所示,则该几何体的体积为(  )
A.16B.24C.30D.32

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.过四面体ABCD的顶点D作半径为1的球,该球与四面体ABCD的外接球相切于点D,且与平面ABC相切,若AD=2$\sqrt{3}$,∠BAD=∠CAD=45°,∠BAC=60°,则四面体ABCD的外接球的半径为3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知三棱锥A-BCD中,AD⊥面ABC,∠BAC=120°,AB=AD=AC=2,求该棱锥的外接球半径.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.骨质疏松症被称为“静悄悄的流行病“,早期的骨质疏松症患者大多数无明显的症状,针对中学校园的学生在运动中骨折事故频发的现状,教师认为和学生喜欢喝碳酸饮料有关,为了验证猜想,学校组织了一个由学生构成的兴趣小组,联合医院检验科,从高一年级中按分层抽样的方法抽取50名同学 (常喝碳酸饮料的同学30,不常喝碳酸饮料的同学20),对这50名同学进行骨质检测,检测情况如表:(单位:人)
有骨质疏松症状无骨质疏松症状总计
常喝碳酸饮料的同学22830
不常喝碳酸饮料的同学81220
总计302050
(1)能否据此判断有97.5%的把握认为骨质疏松症与喝碳酸饮料有关?
(2)现从常喝碳酸饮料且无骨质疏松症状的8名同学中任意抽取两人,对他们今后是否有骨质疏松症状情况进行全程跟踪研究,记甲、乙两同学被抽到的人数为X,求X的分布列及数学期望E(X).
附表及公式.
P(k2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
k2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在△ABC中,角A,B,C所对的边分别为a,b,c,已知A=$\frac{π}{2}$+C,sinB=$\frac{3}{5}$.
(1)求cosC的值;
(2)若a+c=3$\sqrt{5}$,求△ABC的面积.

查看答案和解析>>

同步练习册答案