精英家教网 > 高中数学 > 题目详情
已知数列{an}是等差数列,Sn为{an}的前n项和,且a10=19,S10=100;数列{bn}对任意n∈N*,总有b1•b2•b3…bn-1•bn=an+2成立.
(Ⅰ)求数列{an}和{bn}的通项公式;
(Ⅱ)记cn=(-1)n
4n•bn
(2n+1)2
,求数列{cn}的前n项和Tn
考点:数列的求和,等差数列的前n项和
专题:等差数列与等比数列
分析:(1)由题意和等差数列的前n项和公式求出公差,代入等差数列的通项公式化简求出an,再化简b1•b2•b3…bn-1•bn=an+2,可得当n≥2时b1•b2•b3…bn-1=2n-1,将两个式子相除求出bn
(2)由(1)化简cn=(-1)n
4n•bn
(2n+1)2
,再对n分奇数和偶数讨论,分别利用裂项相消法求出Tn,最后要用分段函数的形式表示出来.
解答: 解:(Ⅰ)设{an}的公差为d,
则a10=a1+9d=19,S10=10a1+
10×9
2
×d=100

解得a1=1,d=2,所以an=2n-1,)
所以b1•b2•b3…bn-1•bn=2n+1…①
当n=1时,b1=3,
当n≥2时,b1•b2•b3…bn-1=2n-1…②
①②两式相除得bn=
2n+1
2n-1
(n≥2)

因为当n=1时,b1=3适合上式,所以bn=
2n+1
2n-1
(n∈N*)


(Ⅱ)由已知cn=(-1)n
4n•bn
(2n+1)2

cn=(-1)n
4n
(2n-1)(2n+1)
=(-1)n(
1
2n-1
+
1
2n+1
)

则Tn=c1+c2+c3+…+cn=-(1+
1
3
)+(
1
3
+
1
5
)-(
1
5
+
1
7
)+…+(-1)n(
1
2n-1
+
1
2n+1
)

当n为偶数时,Tn=-(1+
1
3
)+(
1
3
+
1
5
)-(
1
5
+
1
7
)+…+(-1)n(
1
2n-1
+
1
2n+1
)

=(-1-
1
3
)+(
1
3
+
1
5
)+(-
1
5
-
1
7
)+…+(
1
2n-1
+
1
2n+1
)

=-1+
1
2n+1
=-
2n
2n+1

当n为奇数时,Tn=-(1+
1
3
)+(
1
3
+
1
5
)-(
1
5
+
1
7
)+…+(-1)n(
1
2n-1
+
1
2n+1
)

=(-1-
1
3
)+(
1
3
+
1
5
)+(-
1
5
-
1
7
)+…+(-
1
2n-1
-
1
2n+1
)

=-1-
1
2n+1
=-
2n+2
2n+1

综上:Tn=
-
2n
2n+1
,n为偶数
-
2n+2
2n+1
,n为奇数
点评:本题考查数列的递推公式,等差数列的通项公式、前n项和公式,裂项相消法求数列的和,以及分类讨论思想,考查化简、计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=(
1
2
a-
3
)sinx+(
3
2
a+1)cosx,将f(x)图象向右平移
π
3
个单位长度得到函数g(x)的图象,若对任意x∈R,都有g(x)≤|g(
π
4
)|成立,则a的值为(  )
A、-1B、1C、-2D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数g(x)是实数2a与
-4a
x+2
的等差中项,函数f(x)=ln(1+x)-g(x)
(1)当a=0时,求曲线y=f(x)在原点处的切线方程;
(2)当a>0时,讨论函数f(x)在区间(0,+∞)上的单调性;
(3)证明不等式
1
3
+
1
5
+…+
1
2n+1
<ln
n+1
对任意n∈N*成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在平行四边形ABCD中,点E在边CD上,若在平行四边形ABCD内部随机取一个点Q,则点Q取自△ABE内部的概率是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

方程x3-x-3=0的实数解落在的区间是(  )
A、[-1,0]
B、[0,1]
C、[1,2]
D、[2,3]

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中,以原点为极点,x轴正半轴为极轴,建立极坐标系,已知直线l的参数方程是
x=t-1
y=2t+2
(t为参数),圆C的极坐标方程为ρ=2
2
cos(θ-
π
4
),点P是直线l上的任意一点,PA是圆的一条切线,切点为A,则线段PA的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=ksinx+kcosx+sinxcosx+1
(1)若f(x)≥0在[0,
4
]上恒成立,求实数k的取值范围
(2)当k
2
时,求方程f(x)=0在[-2π,2π]上实数根的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知(1+x)•(2-x)10=b0+b1(x-1)+b2(x-1)2+…+b11(x-1)11,则b1+b2+…b11=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在直角坐标系xOy中,直线l的参数方程为
x=-
1
2
t
y=2+
3
2
t
(t为参数),若以原点O为极点,x轴正半轴为极轴建立极坐标系,已知圆C的极坐标方程为ρ=4cosθ,设M是圆C上任一点,连结OM并延长到Q,使|OM|=|MQ|.
(Ⅰ)求点Q轨迹的直角坐标方程;
(Ⅱ)若直线l与点Q轨迹相交于A,B两点,点P的直角坐标为(0,2),求|PA|+|PB|的值.

查看答案和解析>>

同步练习册答案