精英家教网 > 高中数学 > 题目详情
15.设$\overrightarrow{a}$,$\overrightarrow{b}$为单位向量,若$\overrightarrow c$满足|${\overrightarrow c$-(${\overrightarrow a$+$\overrightarrow b}$)|=|${\overrightarrow a$-$\overrightarrow b}$|,则|${\overrightarrow c}$|的最大值为2$\sqrt{2}$.

分析 由题意可得|$\overrightarrow{c}$|≤|$\overrightarrow{a}$+$\overrightarrow{b}$|+|$\overrightarrow{a}$-$\overrightarrow{b}$|,故当且仅当$\overrightarrow{a}$⊥$\overrightarrow{b}$时,|$\overrightarrow{a}$+$\overrightarrow{b}$|+|$\overrightarrow{a}$-$\overrightarrow{b}$|取得最小值为2$\sqrt{2}$,从而求得|$\overrightarrow{c}$|的最大值.

解答 解:设$\overrightarrow{a}$,$\overrightarrow{b}$为单位向量,若$\overrightarrow c$满足|${\overrightarrow c$-(${\overrightarrow a$+$\overrightarrow b}$)|=|${\overrightarrow a$-$\overrightarrow b}$|≥|$\overrightarrow{c}$|-|$\overrightarrow{a}$+$\overrightarrow{b}$|,即|$\overrightarrow{c}$|≤|$\overrightarrow{a}$+$\overrightarrow{b}$|+|$\overrightarrow{a}$-$\overrightarrow{b}$|,
当且仅当$\overrightarrow{a}$⊥$\overrightarrow{b}$时,|$\overrightarrow{a}$+$\overrightarrow{b}$|+|$\overrightarrow{a}$-$\overrightarrow{b}$|取得最小值为2$\sqrt{2}$,
∴|$\overrightarrow{c}$|的最大值为2$\sqrt{2}$,
故答案为:2$\sqrt{2}$.

点评 本题主要考查了向量模的运算性质、向量的平行四边形法则及其向量垂直的性质的运用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.已知a,b为正实数,且a+b=1,则$\frac{1}{a}$+$\frac{1}{b}$的最小值为4此时a=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若矩形ABCD中AB边的长为2,则$\overrightarrow{AB}$•$\overrightarrow{AC}$的值等于(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.(1)求过点(1,3)且在两坐标轴上截距相等的直线方程
(2)求到直线2x+3y-5=0和4x+6y+8=0的距离相等点的轨迹.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.学校里开运动会,设全集U为所有参加运动会的学生,
A={x|x是参加一百米跑的学生},
B={x|x是参二百米跑的学生},
C={x|x是参加四百米跑的学生},
学校规定,每个参加上述比赛的同学最多只能参加两项,下列集合运算能说明这项规定的是      (  )
A.(A∪B)∪C=UB.(A∪B)∩C=∅C.(A∩B)∩C=∅D.(A∩B)∪C=C

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,在平面直角坐标系xOy中,以x轴正半轴为始边的锐角α和钝角β的终边分别与单位圆交于点A,B.若点A的横坐标是$\frac{3\sqrt{10}}{10}$,点B的纵坐标是$\frac{2\sqrt{5}}{5}$.
(1)求cos(α-β)的值;
(2)求α+β的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若a=$\sqrt{2}$,b=4${\;}^{\frac{3}{8}}$,c=ln2,则(  )
A.c<b<aB.c<a<bC.a<b<cD.b<a<c

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.平面α截球O的球面所得圆的半径为$\sqrt{2}$,球心O到平面α的距离为1,则此球的半径为(  )
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知向量$\overrightarrow a$=(2,x),向量$\overrightarrow b$=(-1,2),若$\overrightarrow a$⊥$\overrightarrow b$,则实数x=1.

查看答案和解析>>

同步练习册答案