精英家教网 > 高中数学 > 题目详情
4.平面α截球O的球面所得圆的半径为$\sqrt{2}$,球心O到平面α的距离为1,则此球的半径为(  )
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.2

分析 利用平面α截球O的球面所得圆的半径为$\sqrt{2}$,球心O到平面α的距离为1,利用勾股定理求出球的半径.

解答 解:因为平面α截球O的球面所得圆的半径为$\sqrt{2}$,球心O到平面α的距离为1,
所以球的半径为:$\sqrt{2+1}$=$\sqrt{3}$.
故选C.

点评 本题考查球的半径的求法,考查空间想象能力、计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.已知定义在(0,$\frac{π}{2}}$)上的函数f(x),f'(x)为其导数,且f'(x)•sinx-cosx•f(x)>0恒成立,则(  )
A.$\sqrt{3}$f($\frac{π}{4}$)>$\sqrt{2}$f($\frac{π}{3}$)B.$\sqrt{2}$f($\frac{π}{6}$)>f($\frac{π}{4}$)C.f(1)<2f($\frac{π}{6}$)sin1D.$\sqrt{3}$f($\frac{π}{6}$)<f($\frac{π}{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.设$\overrightarrow{a}$,$\overrightarrow{b}$为单位向量,若$\overrightarrow c$满足|${\overrightarrow c$-(${\overrightarrow a$+$\overrightarrow b}$)|=|${\overrightarrow a$-$\overrightarrow b}$|,则|${\overrightarrow c}$|的最大值为2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知sin(α+$\frac{π}{6}}$)+cosα=-$\frac{{\sqrt{3}}}{3}$,则cos($\frac{π}{6}$-α)=(  )
A.$-\frac{{2\sqrt{2}}}{3}$B.$\frac{{2\sqrt{2}}}{3}$C.$-\frac{1}{3}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.下列函数中为偶函数又在(0,+∞)上是增函数的是(  )
A.y=($\frac{1}{2}$)|x|B.y=x2C.y=lnxD.y=2-x

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.在公差为2的等差数列{an}中,2a9=a12+6,则a5=(  )
A.4B.6C.8D.10

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知集合A={x|1≤2x+5≤13},B={y|y=$\frac{3}{2$x+2,x∈A},则A∩B等于(  )
A.B.[-1,4]C.[-2,4]D.[-4,2]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知全集U=R,集合A={x|y=log2(11-x2)>1},B={x|x2-x-6>0},M={x|x2+bx+c≥0}.
(1)求A∩B; 
(2)若∁UM=A∩B,求b、c的值.
(3)若x2+bx+c=0一个根在区间(0,1)内,另一根在区间(1,2)内,求z=-2b+c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知等差数列{an},a7=2.则前13项的和S13=(  )
A.13B.25C.26D.39

查看答案和解析>>

同步练习册答案