精英家教网 > 高中数学 > 题目详情

(1)设函数f(x)=(0<x<π),求函数f(x)的值域;

(2)对任意的,不等式恒成立,求的取值范围。

 

【答案】

(1) f(x)==1+,由0<x<π,得0<sin x≤1,

,所以,即的值域为-----------------5分

(2)对任意的,不等式恒成立, 即 对任意的,不等式

恒成立,设函数,即对任意------8分

 

所以,的取值范围是

【解析】略

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(1)设函数f(x)=
m•2x+m-2
2x+1
为奇函数,求m的值;
(2)已知f(x)=
a
a2-2
(ax-a-x)(a>0且a≠1)
是R上的增函数,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合M是满足下列性质的函数f(x)的全体:在定义域内存在x0,使得f(x0+1)=f(x0)+f(1)成立.
(1)设函数f(x)=lg
ax2+1
∈M
,求a的取值范围;
(2)试确定函数f(x)=2x+x2是否属于集合M?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•虹口区二模)已知:函数g(x)=ax2-2ax+1+b(a≠0,b<1),在区间
2,3
上有最大值4,最小值1,设函数f(x)=
g(x)
x

(1)求a、b的值及函数f(x)的解析式;
(2)若不等式f(2x)-k•2x≥0在x∈
-1,1
时恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数g(x)=ax2-2ax+1+b(a>0),在区间[2,3]上有最大值4,最小值1,设函数f(x)=
g(x)
x

(1)求a、b的值; 
(2)当
1
2
≤x≤2
时,求函数f(x)的值域;
(3)若不等式f(2x)-k≥0在x∈[-1,1]上恒成立,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•天河区三模)设f(x)是定义在区间(1,+∞)上的函数,其导函数为f'(x).如果存在实数a和函数h(x),其中h(x)对任意的x∈(1,+∞)都有h(x)>0,使得f'(x)=h(x)(x2-ax+1),则称函数f(x)具有性质P(a).
(1)设函数f(x)=Inx+
b+2x+1
(x>1)
,其中b为实数.
(i)求证:函数f(x)具有性质P(b);
(ii)求函数f(x)的单调区间.
(2)已知函数g(x)具有性质P(2),给定x1,x2∈(1,+∞),x1<x2,设m为实数,a=mx1+(1-m)x2,β=(1-m)x1+mx2,且a>1,β>1,若|g(a)-g(β)|<|g(x1)-g(x2)|,求m取值范围.

查看答案和解析>>

同步练习册答案