精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x3+3ax2+3ax+1.
(Ⅰ)若一条直线与曲线y=f(x)相切于点(1,3),求这条直线的方程;
(Ⅱ)若该函数在x=2处取到极值,试判断方程f(x)=0的实根的个数.
分析:(I)欲求出切线方程,只须求出其斜率即可,故先利用导数求出在x=1处的导函数值,再结合导数的几何意义即可求出切线的斜率.从而问题解决.
(II)首先求出函数的导数,根据函数在x=2处取到极值求得a值,然后根据导数与单调区间的关系确定函数的单调区间,分析可知y=f(x)图象的大致形状及走向,可知函数图象的变化情况,可知方程f(x)=0有3个不同实根.
解答:解:(Ⅰ)将点(1,3)代入f(x)=x3+3ax2+3ax+1,得a=
1
6
.…(2分)
于是f(x)=x3+
1
2
x2+
1
2
x+1.
∴f′(x)=3x2+x+
1
2

由题意知该直线的斜率为k=f′(1)=
9
2
.…(4分)
∴所求直线方程为y-3=
9
2
(x-1),即9x-2y-3=0.…(6分)
(Ⅱ) f′(x)=3x2+6ax+3a.
由f′(2)=0,得a=-
4
5
.…(8分)
此时f′(x)=3x2-
24
5
x-
12
5

由f′(x)=3x2-
24
5
x-
12
5
>0,解得x<-
2
5
或x>2.
∴f(x)最大f(-
2
5
)>0,f(x)最小=f(2)<0.
所以曲线y=f(x)与x轴有3个交点.,即方程f(x)=0有3个实根.…(12分)
点评:本小题主要考查直线的斜率、导数的几何意义、利用导数研究曲线上某点切线方程、利用导数研究函数的单调性等基础知识,体现了数形结合的思想方法,属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分图象如图所示,则f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:深圳一模 题型:解答题

已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案