【题目】预计某地区明年从年初开始的前
个月内,对某种商品的需求总量
(万件)近似满足:
,且
)
(1)写出明年第
个月的需求量
(万件)与月份
的函数关系式,并求出哪个月份的需求量超过
万件;
(2)如果将该商品每月都投放到该地区
万件(不包含积压商品),要保证每月都满足供应,
应至少为多少万件?(积压商品转入下月继续销售)
科目:高中数学 来源: 题型:
【题目】如图,网格纸上小正方形的边长为1,粗线画出的是某个四面体的三视图,则该四面体的表面积为( ) ![]()
A.8+8
+4 ![]()
B.8+8
+2 ![]()
C.2+2
+ ![]()
D.
+
+ ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
,
(其中
,
),且函数
的图象在点
处的切线与函数
的图象在点
处的切线重合.
(1)求实数
,
的值;
(2)记函数
,是否存在最小的正常数
,使得当
时,对于任意正实数
,不等式
恒成立?给出你的结论,并说明结论的合理性.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}的前n项和Sn=n2﹣n,数列{bn}的前n项和Tn=4﹣bn .
(1)求数列{an}和{bn}的通项公式;
(2)设cn=
anbn , 求数列{cn}的前n项和Rn的表达式.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥
的底面是正方形,每条侧棱的长都是底面边长的
倍,
为侧棱
上的点.
![]()
(1)求证:
.
(2)若
⊥平面
,求二面角
的大小.
(3)在(2)的条件下,侧棱SC上是否存在一点E,使得BE∥平面PAC?若存在,求SE∶EC的值;若不存在,试说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
已知曲线
和定点
,
是此曲线的左、右焦点,以原点
为极点,以
轴正半轴为极轴,建立极坐标系.
(1)求直线
的极坐标方程;
(2)经过点
且与直线
垂直的直线交此圆锥曲线于
两点,求
的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com