精英家教网 > 高中数学 > 题目详情
数列{an}满足a1=1,nan+1=(n+1)an+n(n+1),n∈N*
(Ⅰ)证明:数列{
an
n
}是等差数列;
(Ⅱ)设bn=3n
an
,求数列{bn}的前n项和Sn
考点:数列的求和,等比关系的确定
专题:
分析:(Ⅰ)将nan+1=(n+1)an+n(n+1)的两边同除以n(n+1)得
an+1
n+1
=
an
n
+1
,由等差数列的定义得证.
(Ⅱ)由(Ⅰ)求出bn=3n
an
=n•3n,利用错位相减求出数列{bn}的前n项和Sn
解答: 证明(Ⅰ)∵nan+1=(n+1)an+n(n+1),
an+1
n+1
=
an
n
+1

an+1
n+1
-
an
n
=1

∴数列{
an
n
}是以1为首项,以1为公差的等差数列;
(Ⅱ)由(Ⅰ)知,
an
n
=1+(n-1)•1=n

an=n2
bn=3n
an
=n•3n
Sn=1×3+2×32+3×33+…+(n-1)•3n-1+n•3n
3Sn=1×32+2×33+3×34+…+(n-1)•3n+n•3n+1
①-②得-2Sn=3+32+33+…+3n-n•3n+1
=
3-3n+1
1-3
-n•3n+1

=
1-2n
2
3n+1-
3
2

Sn=
2n-1
4
3n+1+
3
4
点评:本题考查利用等差数列的定义证明数列是等差数列;考查数列求和的方法:错位相减法.求和的关键是求出通项选方法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

平面向量
a
=(1,2),
b
=(4,2),
c
=m
a
+
b
(m∈R),且
c
a
的夹角等于
c
b
的夹角,则m=(  )
A、-2B、-1C、1D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

设m、n是两条不同的直线,α,β是两个不同的平面,则(  )
A、若m⊥n,n∥α,则m⊥α
B、若m∥β,β⊥α,则m⊥α
C、若m⊥β,n⊥β,n⊥α,则m⊥α
D、若m⊥n,n⊥β,β⊥α,则m⊥α

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2,g(x)=2elnx(x>0)(e为自然对数的底数).
(1)求F(x)=f(x)-g(x)(x>0)的单调区间及最小值;
(2)是否存在一次函数y=kx+b(k,b∈R),使得f(x)≥kx+b且g(x)≤kx+b对一切x>0恒成立?若存在,求出该一次函数的表达式;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x-
a
x
(a>0),g(x)=2lnx.
(1)若对[1,+∞)内任意的x,不等式f(x)≥g(x)恒成立,求a的取值范围;
(2)当a=1时,
(i).求最大正整数k,使得任意k个实数x1,x2,…,xk∈[e,3],都有f(x1)+f(x2)+…+f(xk-1)≤16g(xk)成立(e=2.71828…是自然对数的底数);
(ii).求证:
n
i=1
4i
4i2-1
>ln(2n+1)(i,n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD的底面是边长为8的正方形,四条侧棱长均为2
17
,点G,E,F,H分别是棱PB,AB,CD,PC上共面的四点,平面GEFH⊥平面ABCD,BC∥平面GEFH.
(Ⅰ)证明:GH∥EF;
(Ⅱ)若EB=2,求四边形GEFH的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

设△ABC的内角A,B,C所对边的长分别为a,b,c,且b=3,c=1,△ABC的面积为
2
,求cosA与a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

某地区2007年至2013年农村居民家庭人均纯收入y(单位:千元)的数据如下表:
年份2007200820092010201120122013
年份代号t1234567
人均纯收入y2.93.33.64.44.85.25.9
(Ⅰ)求y关于t的线性回归方程;
(Ⅱ)利用(Ⅰ)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入.
附:回归直线的斜率和截距的最小二乘估计公式分别为:
b
=
n
i=1
(ti-
.
t
)(yi-
.
y
)
n
i=1
(ti-
.
t
)2
a
=
.
y
-
b
.
t

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=lgx2的单调递减区间是
 

查看答案和解析>>

同步练习册答案