精英家教网 > 高中数学 > 题目详情
函数f(x)=x-1-alnx(a∈R)
(I)求函数f(x)的极值;
(II)若a<0,对于任意x1,x2∈(0,1],且x1≠x2,都有|f(x1)-f(x2)|<4|
1
x1
-
1
x2
|
,求实数a的取值范围.
考点:导数在最大值、最小值问题中的应用,利用导数研究函数的极值
专题:综合题,导数的综合应用
分析:(I)求导函数,分类讨论,确定函数的单调性,即可求函数f(x)的极值;
(II)|f(x1)-f(x2)|<4|
1
x1
-
1
x2
|
,即f(x2)+4×
1
x2
≤f(x1)+4×
1
x1
,设h(x)=f(x)+
4
x
=x-1-alnx+
4
x
,则|f(x1)-f(x2)|<4|
1
x1
-
1
x2
|
,等价于函数h(x)在区间(0,1]上是减函数,求导函数,即使x2-ax-4≤0在(0,1]上恒成立,然后利用分离法将a分离出来,从而求出a的范围.
解答: 解:(I)由题意,x>0,f′(x)=1-
a
x

若a≤0时,f′(x)>0恒成立,所以函数f(x)在(0,+∞)上是增函数,函数f(x)不存在极值;
当a>0时,∵x>a时,f′(x)>0,∴函数f(x)在(a,+∞)上是增函数;0<x<a时,f′(x)<0,所以函数f(x)在(0,a)上是减函数,
∴x=a时,函数f(x)有极小值f(a)=a-1-alna;
(II)当a<0时,由(I)知函数f(x)在(0,1]上是增函数,又函数y=
1
x
在(0,1]上是减函数
不妨设0<x1≤x2≤1
则|f(x1)-f(x2)|=f(x2)-f(x1),
|f(x1)-f(x2)|<4|
1
x1
-
1
x2
|
,即f(x2)+4×
1
x2
≤f(x1)+4×
1
x1

设h(x)=f(x)+
4
x
=x-1-alnx+
4
x

|f(x1)-f(x2)|<4|
1
x1
-
1
x2
|
,等价于函数h(x)在区间(0,1]上是减函数
∵h'(x)=1-
a
x
-
4
x2
=
x2-ax-4
x2
,∴x2-ax-4≤0在(0,1]上恒成立,
即a≥x-
4
x
在(0,1]上恒成立,即a不小于y=x-
4
x
在(0,1]内的最大值.
而函数y=x-
4
x
在(0,1]是增函数,∴y=x-
4
x
的最大值为-3
∴a≥-3,
又a<0,∴a∈[-3,0).
点评:本题主要考查了利用导数研究曲线上某点切线方程,以及恒成立问题的应用,同时考查了计算能力,转化与化归的思想,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设集合A=|f(x)|存在互不相等的正整数m,n,k,使得[f(n)]2=f(m)f(k),则不属于集合A的函数是(  )
A、f(x)=2x-1
B、f(x)=x2
C、f(x)=2x+1
D、f(x)=log2x

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
2
ax2-(a+1)x+lnx,g(x)=x2-2bx-
5
4

(Ⅰ)当a=0时,求曲线y=f(x)在点(1,f(1))处的切线方程;
(Ⅱ)当a<0时,求函数f(x)的单调区间;
(Ⅲ)当a=
1
2
时,对任意x1∈(0,2],存在x2∈[1,2],使得f(x1)≤g(x2)成立,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知某种同型号的6瓶饮料中有2瓶已过了保质期.
(1)从6瓶饮料中任意抽取1瓶,求抽到没过保质期的饮料的概率;
(2)从6瓶饮料中随机抽取2瓶,求抽到已过保质期的饮料的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
r2
b2
=1(a<b<0)的离心率为
1
2
,椭圆C的中心O关于直线2x-y-5=0的对称点落在直线x=a2上.
(1)求椭圆C的方程;
(2)设P(4,0)是椭圆C上关于x轴对称的任意两点,连接PN交椭圆C于另一点E,求直线PN的斜率范围并证明直线ME与x轴相交顶点.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
lg(x2-2x)
9-x2
的定义域为A,
(1)求A;
(2)若B={x|x2-2x+1-k2≥0},且A∩B≠∅,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

某中学为丰富教工生活,国庆节举办教工趣味投篮比赛,有A、B两个定点投篮位置,在A点投中一球得2分,在B点投中一球得3分.其规则是:按先A后B再A的顺序投篮.教师甲在A和B点投中的概率分别是
1
2
1
3
,且在A、B两点投中与否相互独立.
(Ⅰ)若教师甲投篮三次,试求他投篮得分X的分布列和数学期望;
(Ⅱ)若教师乙与甲在A、B点投中的概率相同,两人按规则各投三次,求甲胜乙的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=|ax+1|(a∈R),不等式f(x)≤3的解集为{x|-2≤x≤1}.
(Ⅰ)求a的值;  
(Ⅱ)若|f(x)-2f(
x
2
)|≤k恒成立,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

某几何体的三视图如图(其中侧视图中的圆弧是半圆),则该几何体的表面积为
 

查看答案和解析>>

同步练习册答案