分析 (1)利用特殊角的三角函数值及两角差的余弦函数公式,两角和的正弦函数公式化简可得f(x)=$\sqrt{3}$sin(2x-$\frac{π}{3}$),利用周期公式及正弦函数的性质即可得解.
(2)由(1)及f($\frac{B}{2}$)=-$\frac{\sqrt{3}}{2}$,化简可得sin(B-$\frac{π}{3}$)=-$\frac{1}{2}$,结合a>b,可得B-$\frac{π}{3}$∈(-$\frac{π}{3}$,$\frac{π}{6}$),利用正弦函数的性质可求B,进而利用正弦定理可求sinC,结合C的范围,即可得解C的值.
解答 解:(1)∵f(x)=cos(2x-$\frac{2π}{3}$)-cos2x=-$\frac{1}{2}$cos2x+$\frac{\sqrt{3}}{2}$sin2x-cos2x=$\sqrt{3}$sin(2x-$\frac{π}{3}$),
∴函数f(x)的周期T=$\frac{2π}{2}$=π,f(x)min=-$\sqrt{3}$.
(2)∵f($\frac{B}{2}$)=-$\frac{\sqrt{3}}{2}$,即:$\sqrt{3}$sin(B-$\frac{π}{3}$)=-$\frac{\sqrt{3}}{2}$,可得:sin(B-$\frac{π}{3}$)=-$\frac{1}{2}$,
∵a>b,可得B∈(0,$\frac{π}{2}$),可得:B-$\frac{π}{3}$∈(-$\frac{π}{3}$,$\frac{π}{6}$)
∴B-$\frac{π}{3}$=-$\frac{π}{6}$,可得:B=$\frac{π}{6}$,
又∵b=1,c=$\sqrt{3}$,
∴sinC=$\frac{csinB}{b}$=$\frac{\sqrt{3}×\frac{1}{2}}{1}$=$\frac{\sqrt{3}}{2}$,
∵C∈($\frac{π}{6}$,π),
∴C=$\frac{π}{3}$或$\frac{2π}{3}$(舍去).
点评 本题主要考查了 特殊角的三角函数值,两角差的余弦函数公式,两角和的正弦函数公式,周期公式,正弦函数的性质,正弦定理在解三角形中的综合应用,考查了转化思想,解题时要注意验根,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (0,$\frac{\sqrt{2}}{2}$) | B. | ($\frac{\sqrt{2}}{2}$,1) | C. | (1,$\sqrt{2}$) | D. | ($\sqrt{2}$,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 8 | B. | 16 | C. | 32 | D. | 64 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 函数f(x)的最小正周期为$\frac{π}{2}$ | B. | φ=$\frac{π}{9}$ | ||
| C. | 函数f(x)的图象关于直线x=$\frac{5π}{6}$对称 | D. | 函数f(x)在区间[0,$\frac{π}{4}$]上是增函数 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com