精英家教网 > 高中数学 > 题目详情
已知sinα=-
3
5
,且α是第三象限的角,则sin(α+
π
4
)
=(  )
分析:由sinα的值,以及α为第三象限角,利用同角三角函数间的基本关系求出cosα,所求式子利用两角和与差的正弦函数公式及特殊角的三角函数值化简,将各自的值代入计算即可求出值.
解答:解:∵sinα=-
3
5
,α是第三象限的角,
∴cosα=-
1-sin2α
=-
4
5

则sin(α+
π
4
)=
2
2
sinα+
2
2
cosα=
2
2
×(-
3
5
-
4
5
)=-
7
2
10

故选D
点评:此题考查了两角和与差的正弦函数公式,以及同角三角函数间的基本关系,熟练掌握公式是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知sinθ=
3
5
θ∈(
π
2
,π)
,求tanθ,cos(θ+
π
4
)
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知sinα=
3
5
,则cos2α的值为(  )
A、-
24
25
B、-
7
25
C、
7
25
D、
24
25

查看答案和解析>>

科目:高中数学 来源: 题型:

已知sinα=
3
5
,且α∈(
π
2
,π)
,那么sin2α等于(  )
A、
12
25
B、-
12
25
C、
24
25
D、-
24
25

查看答案和解析>>

科目:高中数学 来源: 题型:

已知sinα=
3
5
,α∈(0,
π
2
)

(1)求cosα的值;
(2)求sin2α+cos2α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•广州一模)已知sinθ=
3
5
θ∈(0,
π
2
)
,求tanθ和cos2θ的值.

查看答案和解析>>

同步练习册答案