精英家教网 > 高中数学 > 题目详情
已知实数x,y满足
y≤1
y≥|x-1|
,若x+2y≤a恒成立,则a的最小值为
4
4
分析:先根据约束条件画出可行域,设z=x+2y,再利用z的几何意义求最大值,只需求出直线z=x+2y过可行域内的角点时,从而得到z=x+2y的最大值,再根据x+2y≤a恒成立,即a大于等于z=x+2y的最大值即可得到a的最小值.
解答:解:先根据约束条件画出可行域,
设z=x+2y,
将z的值转化为直线z=x+2y在y轴上的截距,
当直线z=x+2y经过点A(2,1)时,z最大,最大值为4.
若x+2y≤a恒成立,则a≥4
则a的最小值为 4.
故答案为:4.
点评:本题主要考查了用平面区域二元一次不等式组,以及简单的转化思想和数形结合的思想,属中档题.目标函数有唯一最优解是我们最常见的问题,这类问题一般要分三步:画出可行域、求出关键点、定出最优解.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知实数x,y满足
y≥1
y≤2x-1
x+y≤8
,则目标函数z=x2+(y-3)2的最小值为
16
5
16
5

查看答案和解析>>

科目:高中数学 来源: 题型:

已知实数x,y满足
y≥1
y≤2x-1
x+y≤m
,若目标函数z=x-y的最小值的取值范围是[-3,-2],则实数m的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•武汉模拟)已知实数x,y满足
y-x≥1
x+y≤1
-2x+y≤2
,则当z=3x-y取得最小值时(x,y)=
(-1,0)
(-1,0)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知实数x,y满足y=x2-2x+2(-1≤x≤1),则
y+3
x+2
的最大值与最小值的和为
28
3
28
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知实数x,y满足
y≤1
y≥|x-1|
,则3x-y的最大值是
5
5

查看答案和解析>>

同步练习册答案