精英家教网 > 高中数学 > 题目详情
3.如图,AT切⊙O于T,若AT=6,AE=3,AD=4,DE=2,则BC等于(  )
A.3B.4C.6D.8

分析 利用AT为⊙O的切线,求出AT,证明△EAD∽△CAB,可得$\frac{DE}{BC}=\frac{AE}{AC}$,即可求出BC.

解答 解:∵AT为⊙O的切线,∴AT2=AD•AC.
∵AT=6,AD=4,∴AC=9.
∵∠ADE=∠B,∠EAD=∠CAB,
∴△EAD∽△CAB,即$\frac{DE}{BC}=\frac{AE}{AC}$,
∴BC=$\frac{DE•AC}{AE}$=$\frac{2×9}{3}$=6.
故选:C.

点评 本题考查切割线定理,考查三角形相似的判断与性质,考查学生的计算能力,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.如图1,在平行四边形ABCD中,AB=2AD,E,F分别为AB,CD的中点,沿EF将四边形AEFD折起到新位置变为四边形A′EFD′,使A′B=A′F(如图2所示).
(1)证明:A′E⊥BF;
(2)若∠BAD=60°,A′E=$\sqrt{2}$A'B=2,求二面角A′-EF-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.如图,在三棱锥S-ABC中,底面ABC为等边三角形,SA=SB=$\sqrt{10}$,AB=2,平面SAB⊥平面ABC,则SC与平面ABC所成角的大小是60°.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.在空间直角坐标系中,$\overrightarrow{i}$=(1,0,0),$\overrightarrow{j}$=(0,1,0),$\overrightarrow{k}$=(0,0,1),则与$\overrightarrow{i}$,$\overrightarrow{j}$,$\overrightarrow{k}$所成角都相等的单位向量为(  )
A.(1,1,1)B.($\frac{1}{3}$,$\frac{1}{3}$,$\frac{1}{3}$)
C.($\frac{\sqrt{3}}{3}$,$\frac{\sqrt{3}}{3}$,$\frac{\sqrt{3}}{3}$)D.($\frac{\sqrt{3}}{3}$,$\frac{\sqrt{3}}{3}$,$\frac{\sqrt{3}}{3}$)或(-$\frac{\sqrt{3}}{3}$,-$\frac{\sqrt{3}}{3}$,-$\frac{\sqrt{3}}{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.不等式组$\left\{\begin{array}{l}-2{x^2}+x+1<0\\(x-1)(x-2)(x-3)>0\end{array}\right.$的解集是(  )
A.(-∞,$\frac{1}{2}$)∪(1,2)B.(1,2)∪(3,+∞)C.(-∞,$\frac{1}{2}$)∪(1,+∞)D.(2,3)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.如图所示,AO⊥平面BOC,∠OAB=30°,△AOC与△AOB全等,且二面角B-AO-C是直二面角,动点P在线段AB上,则CP与平面AOB所成角的正切的最大值为(  )
A.1B.$\sqrt{3}$C.$\frac{\sqrt{3}}{3}$D.$\frac{2\sqrt{3}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.非零向量$\overrightarrow{m}$,$\overrightarrow{n}$的夹角的余弦值为$\frac{1}{3}$,且4|$\overrightarrow{m}$|=3|$\overrightarrow{n}$|,若$\overrightarrow{n}$⊥(t$\overrightarrow{m}$+$\overrightarrow{n}$),则实数t为(  )
A.4B.-4C.$\frac{4}{9}$D.-$\frac{4}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.经调查统计,在某十字路中红亮起时排队等候的车辆数及相应概率如下:
排队车辆数0123≥4
概率x0.30.30.20.1
则该十字路口红灯亮起时至多有2辆车排队等候的概率是(  )
A.0.7B.0.6C.0.4D.0.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设a,b,c是正整数,且a∈[70,80),b∈[80,90),c∈[90,100],当数据a,b,c的方差最小时,a+b+c的值为(  )
A.252或253B.253或254C.254或255D.267或268

查看答案和解析>>

同步练习册答案