精英家教网 > 高中数学 > 题目详情
14.如图,在三棱锥S-ABC中,底面ABC为等边三角形,SA=SB=$\sqrt{10}$,AB=2,平面SAB⊥平面ABC,则SC与平面ABC所成角的大小是60°.

分析 取AB的中点O,连接SO,CO,证明CO⊥平面SAB,即∠CSO是SC与平面ABC所成的角,根据三角形的边角关系进行求解即可.

解答 解:取AB的中点O,连接SO,CO,
∵底面ABC为等边三角形,SA=SB=$\sqrt{10}$,
∴SO⊥AB,OC⊥AB,
∵面SAB⊥平面ABC,
∴CO⊥平面SAB,
即∠CSO是SC与平面ABC所成的角,
∵AB=2,∴OC=$\sqrt{3}$,OA=1,
∵SA=SB=$\sqrt{10}$,
∴SO=$\sqrt{10-1}=\sqrt{9}$=3,
则直角三角形SOC中,tan∠CSO=$\frac{CO}{SO}=\frac{3}{\sqrt{3}}=\sqrt{3}$,
则∠CSO=60°,
故答案为:60°.

点评 本题主要考查线面角的求解,根据条件先证明CO⊥平面SAB,然后得到∠CSO是SC与平面ABC所成的角是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.已知正三角形ABC的顶点B,C在平面α内,顶点A在平面α上的射影为A′,若△A′BC为锐角三角形,则二面角A-BC-A′大小的余弦值的取值范围是($\frac{\sqrt{3}}{3}$,1].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在△ABC中,若(sinB+sinC):(sinC+sinA):(sinA+sinB)=4:5:6,则最大角的度数是(  )
A.60°B.90°C.120°D.150°

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知f(x)=4x-2x+1-3,则f(x)<0的解集为{x|x<log23}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知△ABC的三角A,B,C成等差数列,三边a,b,c成等比数列.
(1)求角B的度数.
(2)若△ABC的面积S=$\sqrt{3}$,求边b的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.正方体ABCD-A1B1C1D1中,E,F分别为AB,AA1的中点,则EF与A1C1所成的角为(  )
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知△ABC的三边AB、BC、AC所在的直线方程分别为3x-4y+7=0,2x+3y-1=0,5x-y-11=0
(1)求顶点A的坐标;
(2)求BC边上的高所在直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.如图,AT切⊙O于T,若AT=6,AE=3,AD=4,DE=2,则BC等于(  )
A.3B.4C.6D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若b>a>0,则下列不等式中一定成立的是(  )
A.$\frac{a+b}{2}$>b>$\sqrt{ab}$>aB.b>$\sqrt{ab}$>$\frac{a+b}{2}$>aC.b>a>$\frac{a+b}{2}$>$\sqrt{ab}$D.b>$\frac{a+b}{2}$>$\sqrt{ab}$>a

查看答案和解析>>

同步练习册答案