在△,已知
(1)求角值;
(2)求的最大值.
科目:高中数学 来源: 题型:解答题
已知函数.
(Ⅰ)请用“五点法”画出函数在长度为一个周期的闭区间上的简图(先在所给的表格中填上所需的数值,再画图);
(Ⅱ)求函数的单调递增区间;
(Ⅲ)当时,求函数的最大值和最小值及相应的的值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
行列式按第一列展开得,记函数,且的最大值是.
(1)求;
(2)将函数的图像向左平移个单位,再将所得图像上各点的横坐标扩大为原来的倍,纵坐标不变,得到函数的图像,求在上的值域.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数()的最小正周期为.
(Ⅰ)求函数的单调增区间;
(Ⅱ)将函数的图象向左平移个单位,再向上平移个单位,得到函数的图象.求在区间上零点的个数.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设P是⊙O:上的一点,以轴的非负半轴为始边、OP为终边的角记为,又向量。且.
(1)求的单调减区间;
(2)若关于的方程在内有两个不同的解,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
某单位有、、三个工作点,需要建立一个公共无线网络发射点,使得发射点到三个工作点的距离相等.已知这三个工作点之间的距离分别为,,.假定、、、四点在同一平面内.
(Ⅰ)求的大小;
(Ⅱ)求点到直线的距
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com