精英家教网 > 高中数学 > 题目详情

在△中,角所对的边分别为,且.
(1)求的值;
(2)若,求的值.

(1);(2).

解析试题分析:(1)先利用二倍角公式得到的值,再结合三角形的内角和定理与诱导公式得到,进而求出的值;(2)对角利用余弦定理,得到以为未知数的一元二次方程,进而求解的值.
试题解析:(1)在中,. 所以.
所以
(2)因为
由余弦定理, 得,解得.
考点:1.二倍角公式;2.诱导公式;3.余弦定理

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

设平面向量,函数.
(Ⅰ)求函数的值域和函数的单调递增区间;
(Ⅱ)当,且时,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

函数(其中)的图象如图所示,把函数的图像向右平移个单位,再向下平移1个单位,得到函数的图像.

(1)若直线与函数图像在时有两个公共点,其横坐标分别为,求的值;
(2)已知内角的对边分别为,且.若向量共线,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.求:
(1)函数的最小值及取得最小值的自变量的集合;
(2)函数的单调增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在△,已知
(1)求角值;
(2)求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知为坐标原点,.
(Ⅰ)若的定义域为,求的单调递增区间;
(Ⅱ)若的定义域为,值域为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求函数的最大值,并指出取到最大值时对应的的值;
(2)若,且,计算的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,其图象上相邻两条对称轴之间的距离为,且过点
(Ⅰ)求的值;
(Ⅱ)求函数的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

中,角所对的边为,且满足
(Ⅰ)求角的值;
(Ⅱ)若,求的取值范围.

查看答案和解析>>

同步练习册答案