精英家教网 > 高中数学 > 题目详情

已知函数.求:
(1)函数的最小值及取得最小值的自变量的集合;
(2)函数的单调增区间.

(1);(2).

解析试题分析:(1)先利用倍角公式对函数进行降幂,再由公式(其中)将函数的解析式化为的形式,从而知当,即时, 取得最小值;(2)因为的单调增区间为,从而由解得函数的单调增区间为.
试题解析:(1)
,即时, 取得最小值.
函数的取得最小值的自变量的集合为.          6分
(2) 由题意得:
即: 因此函数的单调增区间为      12分
考点:1.倍角公式;2.两角和差公式;3.三角函数的单调性.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知向量a=,b=,设函数=ab.
(Ⅰ)求的单调递增区间;
(Ⅱ)若将的图象向左平移个单位,得到函数的图象,求函数在区间上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)求函数的最小正周期;
(Ⅱ) 求函数的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)已知函数
(Ⅰ)求函数的单调递增区间;
(Ⅱ)若关于的方程在区间上有两个不同的实数根,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

行列式按第一列展开得,记函数,且的最大值是.
(1)求
(2)将函数的图像向左平移个单位,再将所得图像上各点的横坐标扩大为原来的倍,纵坐标不变,得到函数的图像,求上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求函数的值域,并写出函数的单调递增区间;
(2)若,且,计算的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在△中,角所对的边分别为,且.
(1)求的值;
(2)若,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知角的顶点在原点,始边与轴的正半轴重合,终边经过点.
(Ⅰ)求的值;
(Ⅱ)若函数,求函数在区间上的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知向量
(1)若,求向量的夹角;
(2)当时,求函数的最大值.

查看答案和解析>>

同步练习册答案