精英家教网 > 高中数学 > 题目详情

已知函数
(1)求函数的值域,并写出函数的单调递增区间;
(2)若,且,计算的值.

(1)值域为;单调递增区间为(2).

解析试题分析:(1)本小题首先需要对函数解析式进行化简变形得,然后根据求得函数的值域为;由,所以函数的单调递增区间为
(2)本小题首先根据代入可得,利用可判断,于是求得,然后展开代入求值即可.
试题解析:(1)      2分
由于,所以函数的值域为   4分

所以函数的单调递增区间为   6分
(2)由(1)得,,即     8分
其中      10分
所以     11分
      13分
      14分
考点:1.三角恒等变换;2.正弦曲线的图像与性质.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数.
(Ⅰ)求的值;
(Ⅱ)求函数的最小正周期及单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求函数的最小正周期和单调递增区间;
(2)在锐角三角形中,若,求△的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知
(Ⅰ)求的单调增区间;(Ⅱ)当时,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.求:
(1)函数的最小值及取得最小值的自变量的集合;
(2)函数的单调增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知向量,函数的最大值为6.
(Ⅰ)求
(Ⅱ)将函数的图象向左平移个单位,再将所得图象上各点的横坐标缩短为原来的倍,纵坐标不变,得到函数的图象.求上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知为坐标原点,.
(Ⅰ)若的定义域为,求的单调递增区间;
(Ⅱ)若的定义域为,值域为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知向量,设函数
(1)若,f(x)=,求的值;
(2)在△ABC中,角A,B,C的对边分别是,且满足,求f(B)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在△ABC中,角A、B、C的对边分别为a、b、c,.
(I)求cosC;  (II)若

查看答案和解析>>

同步练习册答案