精英家教网 > 高中数学 > 题目详情

已知向量a=,b=,设函数=ab.
(Ⅰ)求的单调递增区间;
(Ⅱ)若将的图象向左平移个单位,得到函数的图象,求函数在区间上的最大值和最小值.

(Ⅰ)f(x)的递增区间是[-+kπ,+kπ]( k∈Z);(II)最大值为+1,最小值为0.

解析试题分析:(Ⅰ)将f(x)=a•b=2sin2x+2sinxcosx降次化一,化为的形式,然后利用正弦函数的单调区间,即可求得其单调递增区间.(II)将的图象向左平移个单位,则将换成得到函数的解析式g(x)=sin[2(x+)-]+1=sin(2x+)+1.由≤x≤≤2x+,结合正弦函数的图象可得0≤g(x)≤+1,从而得g(x)的最大值和最小值.
试题解析:(Ⅰ)f(x)=a•b=2sin2x+2sinxcosx
=+sin2x
=sin(2x-)+1,              3分
由-+2kπ≤2x-+2kπ,k∈Z,得-+kπ≤x≤+kπ,k∈Z,
∴ f(x)的递增区间是[-+kπ,+kπ](k∈Z).            6分
(II)由题意g(x)=sin[2(x+)-]+1=sin(2x+)+1,    9分
≤x≤≤2x+
∴0≤g(x)≤+1,即g(x)的最大值为+1,g(x)的最小值为0.   12分
考点:1、向量及三角恒等变换;2、三角函数的单调区间及范围.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数. 的部分图象如图所示,其中点是图象的一个最高点.

(1)求函数的解析式;
(2)已知,求

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=sin ωx·cos ωx+cos 2ωx(ω>0),其最小正周期为.
(1)求f(x)的解析式.
(2)将函数f(x)的图象向右平移个单位,再将图象上各点的横坐标伸长到原来的2倍(纵坐标不变),得到函数yg(x)的图象,若关于x的方程g(x)+k=0,在区间上有且只有一个实数解,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知,且是第一象限角.
(1)求的值;
(2)求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在△ABC中,三个内角A、B、C的对应边为.
(Ⅰ)当
(Ⅱ)设,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(Ⅰ)求的值;
(Ⅱ)求函数的最小正周期及单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设平面向量,函数.
(Ⅰ)求函数的值域和函数的单调递增区间;
(Ⅱ)当,且时,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知.
(Ⅰ)求的值;
(Ⅱ)求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.求:
(1)函数的最小值及取得最小值的自变量的集合;
(2)函数的单调增区间.

查看答案和解析>>

同步练习册答案