精英家教网 > 高中数学 > 题目详情
已知α∈R且α<0,设函数f(x)=ax2+x-3alnx.
(I)求函数f(x)的单调区间;
(Ⅱ)当a=-1时,证明:f(x)≤2x-2.
【答案】分析:(Ⅰ)求出原函数的导函数,解出导函数的零点,由a<0排除一个,然后由零点对定义域分段,根据不同区间段内导函数的符号判断原函数的单调区间;
(Ⅱ)把a=-1代入函数解析式,然后把要证的不等式作差后构造辅助函数,利用导函数求构造出的函数的最值,由函数最大值等于0证得不等式.
解答:(I)解:由f(x)=ax2+x-3alnx,得(x>0).
 令f′(x)=0解得(舍).
列表如下:
x(0,x1x1(x1,+∞)
f′(x)+-
f(x)增函数减函数
故f(x)的单调递增区间为(0,)、递减区间为(,+∞)
(II)证明:f(x)的定义域为(0,+∞),a=-1时,f(x)=x-x2+3lnx
设g(x)=f(x)-(2x-2)=2-x-x2+3lnx.

当0<x<1时,g′(x)>0,当x>1时,g′(x)<0.
所以,g(x)在(0,1)上单调递增,在(1,+∞)上单调递减.
而g(1)=0,故当x>0时,g(x)≤0.
即f(x)≤2x-2.
点评:本题考查了利用导数研究函数的单调性,训练了函数构造法,考查了数学转化思想方法,是有一定难度题目.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知M(-3,0)﹑N(3,0),P为坐标平面上的动点,且直线PM与直线PN的斜率之积为常数m(m≥-1,m≠0).
(1)求P点的轨迹方程并讨论轨迹是什么曲线?
(2)若m=-
5
9
,P点的轨迹为曲线C,过点Q(2,0)斜率为k1的直线?1与曲线C交于不同的两点A﹑B,AB中点为R,直线OR(O为坐标原点)的斜率为k2,求证k1k2为定值;
(3)在(2)的条件下,设
QB
AQ
,且λ∈[2,3],求?1在y轴上的截距的变化范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知α∈R且α<0,设函数f(x)=ax2+x-3alnx.
(I)求函数f(x)的单调区间;
(Ⅱ)当a=-1时,证明:f(x)≤2x-2.

查看答案和解析>>

科目:高中数学 来源:2008年广东地区数学科全国各地模拟试题直线与圆锥曲线大题集 题型:044

已知R(-3,0),点P在y轴上,点Q在x轴的正半轴上,点M在直线PQ上,且满足

(1)当点P在y轴上移动时,求M点的轨迹C的方程;

(2)设A、B为轨迹C上两点,N(1,0),xA>1,yA>0,若存在实数λ,使,且,求λ的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知α∈R且α<0,设函数f(x)=ax2+x-3alnx.
(I)求函数f(x)的单调区间;
(Ⅱ)当a=-1时,证明:f(x)≤2x-2.

查看答案和解析>>

同步练习册答案