精英家教网 > 高中数学 > 题目详情
如下图,面的中点,内的动点,且到直线的距离为的最大值为  
A.30°B.60°C.90°D.120°
B
考点:
分析:由题意推出到直线的距离为的P的轨迹是圆柱,得到平面α的图形是椭圆,然后∠APB的最大值即可.
解答:解:空间中到直线CD的距离为
的点构成一个圆柱面,它和面α相交得一椭圆,所以P在α内的轨迹为一个椭圆,D为椭圆的中心,b=,a= /sin60°=2,则c=1,于是A,B为椭圆的焦点,椭圆上点关于两焦点的张角
在短轴的端点取得最大,故为60°.
故选B.
点评:本题是立体几何与解析几何知识交汇试题,题目新,考查空间想象能力,计算能力.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

如图,在多面体中,已知平面是边长为的正方形,,,且与平面的距离为,则该多面体的体积为(    )
A.B.C.5D.6

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若直线上的一个点在平面α内,另一个点在平面α外,则直线与平面α的位置关系是(   )
A.αB.αC.∥αD.以上都不正确

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)  
如图,直三棱柱的底面位于平行四边形中,,,,点中点.    
  
(1)求证:平面平面.
(2)设二面角的大小为,直线与平面所成的角为,求的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥P—ABCD的底面ABCD是边长为1的菱形,∠BCD﹦60°,E是CD中点,
PA⊥底面ABCD,PA=    
             
(1)证明:平面PBE⊥平面PAB
(2)求二面角A—BE—P的大小。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

(本题满分14分).如图,ABCD中,AB=1,AD=2AB,∠ADC=,EC⊥面ABCD,
EF∥AC, EF=, CE=1
(1)求证:AF∥面BDE
(2)求CF与面DCE所成角的正切值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,在底面是正方形的四棱锥P—ABCD中,平面PCD⊥平面ABCD,PC=PD=CD=2.


 
  (I)求证:PD⊥BC;

  (II)求二面角B—PD—C的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,正方体中,分别为 棱上的点. 已知下列判断:

平面;②在侧面上 的正投影是面积为定值的三角形;③在平面内总存在与平面平行的直线;④平 面与平面所成的二面角(锐角)的大小与点的位置有关,与点的位置无关.
其中正确判断的个数有
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(12分)如图,在四棱锥P—ABCD中,PA⊥平面ABCD,四边形ABCD为直角梯形,AD//BC且AD﹥BC,∠DAB=∠ABC=90°,PA=,AB=BC=1。M为PC的中点。

(1)求二面角M—AD—C的大小;(6分)
(2)如果∠AMD=90°,求线段AD的长。(6分)

查看答案和解析>>

同步练习册答案